German Ultrasound Museum

001 - 056 From matter-testing to A-Scan **B-Scan:** 113 - 114 **Compound scanner Mechanical real-time systems** 115 - 123 124 - 135 **Electronic real-time systems** 136 - 142 **Milestones of development** 140 - 160 **Special developments Doppler-systems** 260 - 282Other objects 346 - 391

Cut transducers without apparatuses 483 - 493

Therapy devices 300-305

Ophthalmologic devices 306-320

description: Echoencephalography

type of device: A-Mode producer/distributor: Krautkrämer/Siemens

development: 1959-1960

frequency: 2 MHz time of production: since 1961

A-Mode-system with oscilloscope for determining time delay and amplitude of an echo. Modification of the ultrasonic testing device Krautkrämer USIP 10 by Siemens Co for brain scans. Oldest echoencephalography system in Germany (here with additional calibrator and camera). 36 x 23 x 56 cm

Origin: Mann, Mainz.

description: Ophalmography

type of device: A-Mode producer/distributor: Krautkrämer/Siemens

development: 1959-1961

frequency: 4-15 MHz time of production: since 1961

A-Mode-system with oscilloscope for determining time delay and amplitude of the echo. Modification of the ultrasonic testing device USIP 10 from Krautkrämer by Siemens Co. for use in Ophthalmology. 36 x 23 x 56 cm Origin: Mann, Mainz.

description: Echocardiography

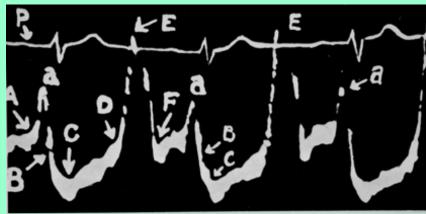
type of device: A-Mode producer/distributor: Krautkrämer/Siemens

1959-1960 development:

frequency: 2-5 MHz time of production: since 1961

A-Mode-system with oscilloscope for determining time delay and amplitude of the echo.

TM – display by auxiliary unit.


Modification of an ultrasonic testing device USIP 10 from Krautkrämer by Siemens Co.

For use in cardiology.

36 x 23 x 56 cm

Special version of oldest German echoencephalography-device converted for Cardiography. - The very first TM-system, however, was an echo material-machine from Siemens Co. modified by Hertz and Edler (Lund) for TM.

description: Material testing

type of device: A-Mode pro

producer/distributor: Krautkrämer

development:

frequency: 0.5-10 MHz time of production: since 1960

Material-testing device type USIP 10 from Krautkrämer Co., Cologne. This original device was later modified for medical diagnostics (Encephalography, Cardiography, Ophthalmography) in collaboration with Siemens Co. (bound by contract).

description: Material testing

type of device: A-Mode producer/distributor: Krautkrämer

development:

frequency: 2 MHz time of production: since 1968

Portable battery-powered non-destructive testing device of Krautkrämer Co., Cologne. Further modifications for medical applications were planned. Only a small number of these devices were ever tested.

description:

Echopan

type of device: A-Mode producer/distributor: Siemens AG, Erlangen

development: 1973-1974

frequency: 2-5 MHz time of production: since 1974

Echoencephalography system with 2 channels for simultaneous bilateral echography of the skull. Used in Neurology (for identifying tumors or atrophy) and in Traumatology (hemorrhages). Equipped for calibration and compensation of depth; filters, camera.

No. 005 description: Echopan KS

development: 1973-1974

frequency: 2-5 MHz time of production: since 1974

A-Mode with M-Mode display via storage oscillograph und UV-recorder with glass-fiber optics. Developed for cardiological examinations.

Later supplemented with mechanical sector-scanner for B-Mode display.

30 x 50 x 60 cm

description: Echogerät Serie 1000

type of device: A-Mode producer/distributor: Kretztechnik AG, Zipf

1955-1958 development:

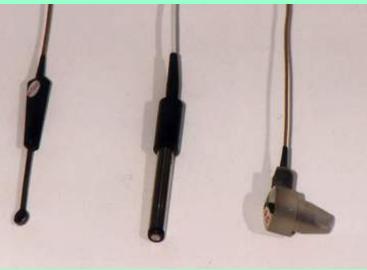
frequency: 1-14 MHz time of production: 1958-1965

This A-Mode device of the 1000 series, a tube model, was one of the first devices developed for non-destructive material testing. Starting in 1960 it was increasingly used for medical purposes; first in Ophthalmology und Neurology (Traumatology), and later in Obstetrics. Analysis of time delay and amplitude of the echo.

description:

4100 MGB

type of device: A-Mode producer/distributor: Kretztechnik AG, Zipf


development: 1966-1968

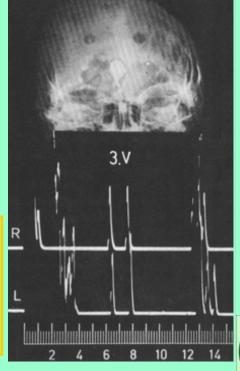
frequency: 0.5-15 MHz time of production: 1968-1978

Two-channel system, time-mark channel, compensation of depth, magnifier, quartz stabilized time scale. This modernized device was fully transistorized.

Used for abdominal and obstetrical diagnostics (including a vaginal probe!). This device was also part of Compound-scan systems. Similar devices were used for echoencephalography, ophthalmography – and also for material testing.

No. 008 description: Echoencephalograph 4200 ME

type of device: A-Mode producer/distributor: Kretztechnik AG, Zipf


development: 1972-1973

frequency: 0.5-4 MHz time of production: 1973-1985

A-Mode-Encephalograph with separate channels for simultaneous bilateral echo investigations. Visual documentation of the screen by retractable camera. Fully transistorized system.

Echoencephalogram:
Diameter of the
3rd ventricle.
Figure: Schiefer,
Erlangen)

No. 009 description: Echoophthalmograph 7200 MA

type of device: A-Mode producer/distributor: Kretztechnik AG, Zipf

development: 1969-1971

frequency: 6-15 MHz time of production: 1971-1985

A-Mode-ophthalmograph, integrated quartz oscillator, calibration, frequency filter. Horizontal resolution 0.3 µsec/mm.

Equipped for standardized examinations – according to Ossoinig.

Origin: Kretztechnik, Zipf.

No. 010 description: Echoencephalograph Model C

type of device: A-Mode producer: Radio & Electrical Lab., Canada

development: 1965

frequency: 3 MHz time of production: 1965

Probably custom-made for H. R. Müller, Basel.

A numerical display (digits) can be switched to either echo amplitude or to timedelay of the echo.

Origin: H. R. Müller, Basel

description: Materialprüfgerät 9020

type of device: A-Mode producer/distributor: Funkwerk Erfurt

development: 1956-1957

frequency: 1-6 MHz time of production: since 1958

A-Mode device, one channel.

The GDR started development of material testing devices (type 608 was a precursor of this device) in 1951. This type 9020 was first used for medical diagnostics (Obstetrics and Traumatology).

Origin: Institute for Medical Physics und Biophysics, Halle University.

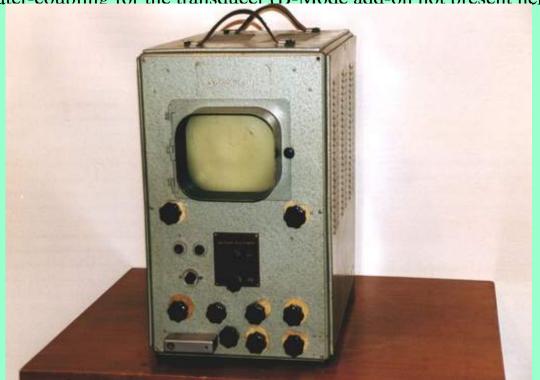
description:

Sonovisor 1

type of device: A-Mode producer/distributor: Carl Zeiss Jena

development:

1956


frequency: 2-5 MHz

time of production:

1957-1958

A-Mode device, later converted to B-Mode, or Schwingschnittverfahren ("swinging sections"). Originally developed for material testing. Later used for medical purposes with an add-on linear probe of about 5 MHz, sliding on circular rails. Mechanical vertical spacing. Control of synchronized image points

by magnetic encoder. Water-coupling for the transducer (B-Mode add-on not present here).

No. 052 description: Sonovisor 2

type of device: A-Mode and producer/distributor: Carl Zeiss Jena

mechanical B-Mode development: 1957-1958

frequency: 2-5 MHz time of production: 1958-1959

A- and B-Mode device, the so-called Schwingschnittverfahren ("swinging sections"). Further development of Sonovisor 1. Partly transistorized. Scanner with no metal coupling disc. Still portable at 25 kg.

Material testing: Fault in metal bar.

description: Echogerät GA 10

type of device: A-Mode producer/distributor: VEB Ultraschalltechnik Halle

development: 1967-1968

frequency: 1-6 MHz time of production: 1968-1971

Belongs to series A 10. Modules slide in and can be interchanged, enabling multifunctional use. Introduced as GA with 1-6 MHz probes for Obstetrics and Gynecology.

Also available: EA 10 for Traumatology, OA 10 for Ophthalmology and KA 10 for Cardiology.

2 channels; EA version 3 includes a calibrated scale and threshold regulation.

Origin: R. Millner, U. Cobet Halle

No. 054 Z description: Echogeraet GA 10

type of device: A-Mode producer/distributor: VEB Ultraschalltechnik Halle

TM-Mode development: 1967-1968

frequency: 10-12 MHz time of production: 1968-1971

Modules slide in and can easily be interchanged. With an added module this device could be used for an echo-glottographia, for example. Movements were recorded in M-Mode (TM-Mode) with a high sampling rate; transducer frequency 10-12 MHz.

description: Echogerät GA 10, older version

type of device: A-Mode producer/distributor: VEB Ultraschalltechnik Halle

development:

1966-1968

frequency: 1-6 MHz time of production: 1968-1971

Older version of the A 10 series. Developed at the Ultrasound Department, Institute of Medical Physics (later: Applied Biophysics), Halle University and at the Research Institute M. v. Ardenne, Dresden.

Production of the pilot series by Strobl company, Berlin, later by VEB Ultraschalltechnik Halle.

description: Echogerät EA 20

type of device: A-Mode producer/distributor: VEB Ultraschalltechnik Halle

1970

development:

frequency: 1-4 MHz time of production: 1970-1980

Improved version of the A 10 series with magnifier, compensation of depth and auto-determination of the midlinee echo.

description: Echoencephalograph T

type of device: A-Mode

producer/distributor: Krautkrämer/Siemens

development:

frequency: ??

time of production:

Origin: R. Soldner, Erlangen

German Ultrasound Museum

001 - 056 From matter-testing to A-Scan **B-Scan:** 113 - 114 **Compound scanner Mechanical real-time systems** 115 - 123 124 - 135 **Electronic real-time systems** 136 - 142 **Milestones of development** 140 - 160 **Special developments Doppler-systems** 260 - 282Other objects 346 - 391 Cut transducers without apparatuses 483 - 493Therapy devices 300-305 Ophthalmologic devices 306-320

Collection of Devices, last update June 2016

No. 113 description: Echoview 80 L

type of device: Compound producer/distributor: Picker Int. Inc., USA

development: approx. 1970


frequency: 1-7.5 MHz time of production: 1974-1979

Displaying A-Mode, B-Mode und TM-scan.

Origin: H.-J. Schultz, Picker International

description:

Combison 202

type of device: Compound producer/distributor: Kretztrechnik AG, Zipf

development:

1978-1979

frequency: 2 and 5 MHz

time of production:

1979-1983

Compound-Scanner, A- and B-Mode. Digital frame storage, grayscale-technique, automatic image evaluation (histogram).

The improved type 202 R offered additional real-time technique (mechanical sector) for

transcutaneous, transrectal und intravesical applications.

cystic liver B-Scan

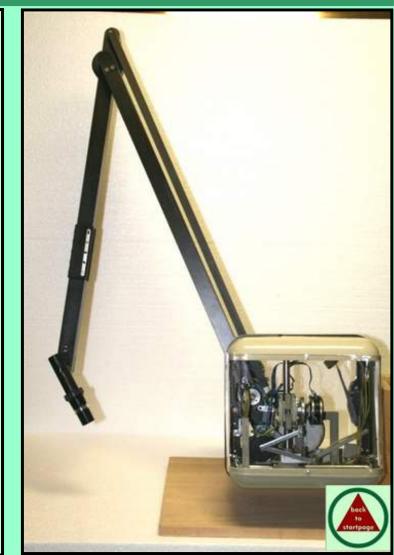
A -Mode

No. 114 SK description: Combison 202

type of device: Compound producer/distributor: Kretztrechnik AG, Zipf

development: 1978-1979

frequency: time of production: 1979-1983



Compound scanner

Scan-arm with localizer for a compound system (Combison 202 Kretz) necessary for manual B-Scans.

During the scan procedure information about the position and the direction of the transducer is gathered. These data are captured as analog electrical signals via mechanically-linked potentiometers and are simultaneously processed in the ultrasonic system.

The accuracy of the data collected in this way substantially determines the precision and the quality of the ultrasound images.

description:

Vidoson 635

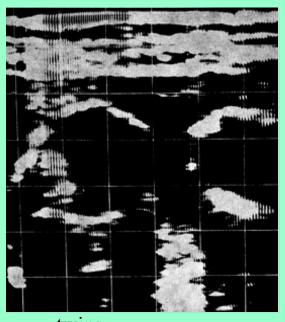
type of device: mechan. Sector producer/distributor: Siemens AG, Erlangen

B-Mode

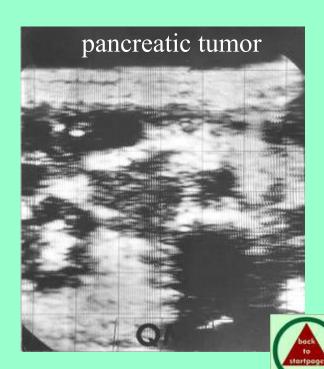
development: 1961-1965

frequency: 2.5 MHz

time of production: 1965-1975


Mechanical real-time B-Mode system (15 frames/sec) with water coupling.

Adjustable section plane, gray-scale display.


Originally developed for mamma-sonography, first used instead in Obstetrics by Holländer, later in abdominal diagnostics by Rettenmaier.

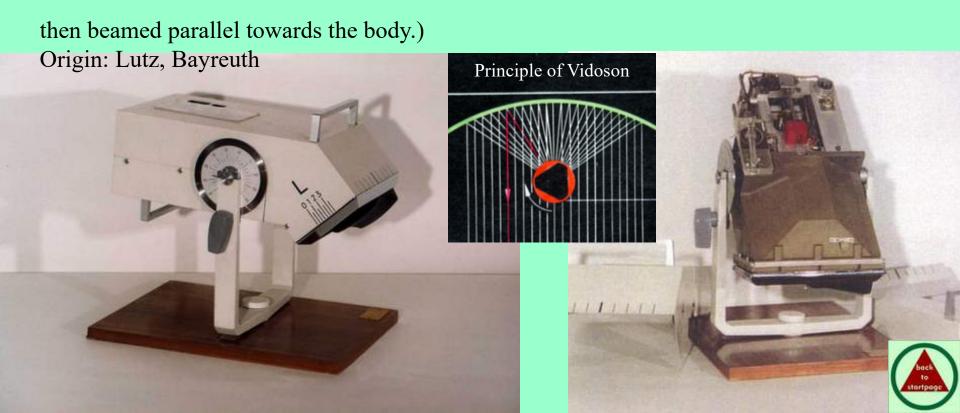
Origin: Rücker, Roderbirken

twins fig. Holländer, 1968

No. 115 Z

description:

Vidoson 635


type of device: mechan. Sector producer/distributor: Siemens AG, Erlangen

B-Mode development: 1961-1965

frequency: 2.5 MHz time of production: 1965-1975

Mechanical real-time B-Mode system (15 frames/sec) with water coupling. Adjustable section plane, gray-scale display. (The ultrasonic impulses of a rotating transducer are first reflected by a parabolic mirror,

No. 115 SK 1

description:

Vidoson 635

type of device: mechan. Sector producer/distributor: Siemens AG, Erlangen

B-Mode development: 1961-1965

2.5 MHz frequency:

time of production: 1965-1975

Mechanical linear sector scanner

Scanner unit of the first real-time ultrasound system (Vidoson 635).

Three successively activated ultrasonic transmitters rotate in the focal plane of a parabolic reflector.

This reflector transforms the original sector scan to a (linear) parallel scan. The reason for this unorthodox solution: The constant rotation of the transducers is – contrary to repetitive longitudinal motions - not subject to inertial force. Therefore scanning time and frame rate are not limited, as they would be in case of longitudinal motions of the transducer.

The longitudinal axis of the rotating transducers can be shifted. In this way the section plane can be varied up to 3.5 cm without moving the complete scanning unit which is connected to the patient's skin. This method was intended to facilitate ultrasonic mamma inspections.

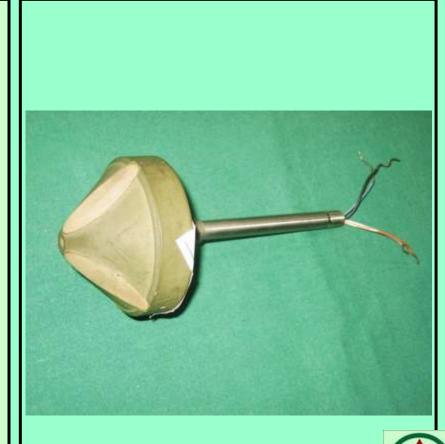
No. 115 SK 2

description:

Vidoson 735

type of device: mechan. Sector producer/distributor: Siemens AG, Erlangen

B-Mode


frequency: 3.5 MHz

time of production: 1978-1980

Rotating transducer mount with three identical periodically-activated transmitters for the Vidoson 735 series.

The elliptic shape of the transducer is a consequence of the opto-acoustical characteristics of the corresponding parabolic reflector.

description: ATL Mark III

type of device: B-Mode producer/distributor: Advanced Technology Labs.

(with optional Doppler mode)

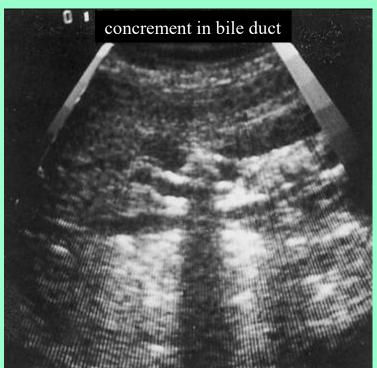
development:

before 1975

frequency: 3.5 and 5 MHz time of production: 1975

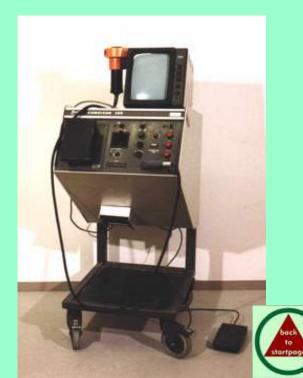
Mechanical B-scan with A- and M-Mode, sector-scanner. Pw-Doppler unit optional, 3.5 and 5 MHz. Programs for measuring; video documentation. Used mainly for abdominal, cardiological, and vascular applications.

description: Combison 100


type of device: B-Mode producer/distributor: Kretztechnik AG, Zipf

development: 1976 - 1978

frequency: $2.5-4~\mathrm{MHz}$ time of production: 1978-1983


Real-time sector scanner. 5, later 3 rotating elements. Omnidirectional measuring possible. Additional monitor.

Transrectal and intravesical transducers. Used in Obstetrics/Gynecology, Internal Medicine and Urology. Origin: Frentzel-Beyme, Berlin

No. 118 Z

description: Combison 100

type of device: B-Mode producer/distributor: Kretztechnik AG, Zipf

development:

1976 - 1978

frequency: 2.5 - 4 MHz

time of production: 1978 - 1983

Real-time sector scanner. Automated mamma scanner:

For imaging the scanner circled the mamma within a water bath – driven by an additional engine. These images were then assembled with the help of a computer, similar to computerized tomography in radiology.

No. 118 SK

description:

Combison 100

type of device: B-Mode producer/distributor: Kretztechnik AG, Zipf

frequency: 3.5 MHz time of production: 1976 - 1979

Mechanical Sector Scanner

Mechanical sector scanner for Combison 100 with 5 identical rotating transducers (fix-focus). The transducer pointing to the connecting window was activated by a magnetic strip fixed at the cover. The accompanying switches, which were also activated by magnets, can be seen between the transducers.

description: Combison 1320-5

type of device: B-Mode producer/distributor: Kretztechnik AG, Zipf

development: 1983/1984

frequency: 3.5 and 7 MHz time of production: 1984-1993

Mechanical sector scanner and electronic multi-array scanner. Intracavitary probes. Digital scan-converter for gray-scale storage. Software: coordinated operation, picture processing, gauging. Integrated instant-camera documentation. Spectral-Doppler as an option. Used for abdomen, obstetrics, transrectal, vaginal and intravesical.

description: Sonoline 3000

type of device: B-Mode producer/distributor: Siemens AG, Erlangen

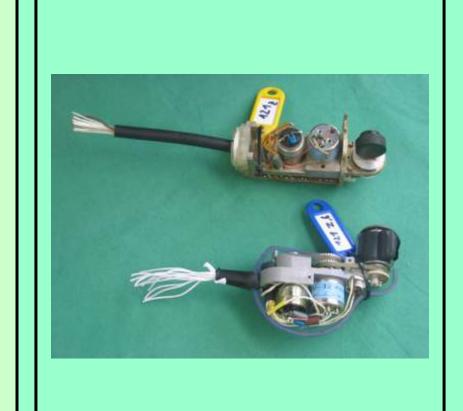
development:

frequency: 3 and 5 MHz time of production: 1985

Real-time sector-scanner with switch from 3 to 5 MHz. Storage function.

No. 121 SK

description: Sonoline 3000


type of device: B-Mode producer/distributor: Siemens AG Erlangen

development:

frequency: 5 MHz time of production: 1978-1980

Sector Scanner

Prototype of a mechanical sector scanner with two identical transducers mounted on a rotating support.

description: B-Mode System SB 30

type of device: B-Mode producer/distributor: VEB Ultraschalltechnik Halle

development:

frequency: 2 and 5 MHz

time of production: 1979

Ultrasound system with 2 rotating scanners, 2 und 5 MHz. 16 levels gray scale, variable TGC, gauging marks. This system was meant to cover the demands for B-mode devices in the German Democratic Republic (GDR), as devices from Western manufacturers could not be imported. However, because of inadequate technology (lack of electronic components), this system was not able to meet international quality standards.

Origin: Institute for Biophysics, Halle

description: Mechanical Sector Scanner

type of device: B-Mode producer/distributor: Halle????

development: ?

frequency: 💙

time of production:

Mechanical sector scanner with 4 identical transducer elements on a rotating disc to be placed directly on the skin. This may have been the transducer for the concept of a compound system with semi-automatic scanning – similar to the system of Jan Donald, Glasgow.

description:

Sonoline SX

type of device: B-, M-Mode producer/distributor: Siemens AG, Erlangen

development: 1982/1983

3.5 and 5 MHz time of production: beginning 1983 frequency:

B-Mode device, mechanical sector-scanner with 3.5 and 5 MHz. Also M-Mode and Doppler-Mode. Zoom. Measurements of distance and volume, calculation of delivery date.

This scanner was developed parallel to the linear-scanner Sonoline LX with identical components as part of the "Sonoline" series.

With a size of only 30 x 24 x 40 cm it was a small, portable scanner-unit for universal use.

Doppler

No. 119 SK

type of device: B-Mode

description:

Sonoline SX

producer/distributor: Siemens AG, Erlangen

development:

frequency: 3.5; 5 MHz time of production: 1982-1984

Sector Scanner

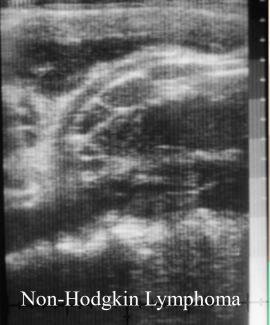
Sample mechanical sector scanner probes with varying ultrasound frequencies, each with three identical transducers on a rotating support.

(With guidance for puncture tubes.)

description: ADR 2130

type of device: B-Mode producer/distributor: ADR/Kranzbühler & Sohn

development:

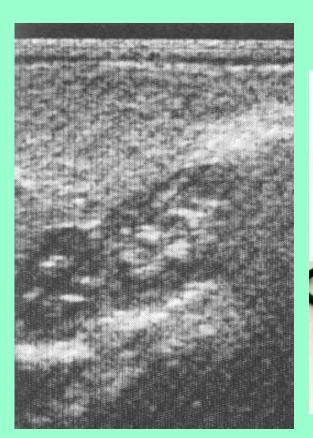

1969-1971

frequency: 1-7.5 MHz

time of production: beginning 1971

Real-time B-Mode device, linear multi-element array probe with 64 single elements. 10 gray scales, 20-40 frames/sec., 50-120 lines. Freeze frame. Electronic caliper. This scanner was developed by ADR in Phoenix, Arizona, and very successfully distributed by Kretz, later by Kranzbühler. Used mainly in Obstetrics and Internal Medicine.

description: Sonolayer SAL-20 A


type of device: B-Mode producer/distributor: Toshiba, Tokyo

development: 1977-1979

frequency: 2.4 and 3.5 MHz time of production: beginning 1979

B – mode, real time. Linear-scanner with electronic focusing. 8 gray scales.

No storage of the screen images possible. Alphanumerical keys for patient's data. Biopsy probe.

description:

Multison 400

type of device: B-Mode producer/distributor: Siemens AG, Erlangen

development: C. 1975

frequency: 2.5 and 3.5 MHz time of production: beginning 1977

B-mode, real time, linear array technique.

30 frames/s with 2.5 MHz,

40 frames/s with 3.5 MHz.

Electronic caliper.

Origin: Dr. F. Lorenz, Berlin

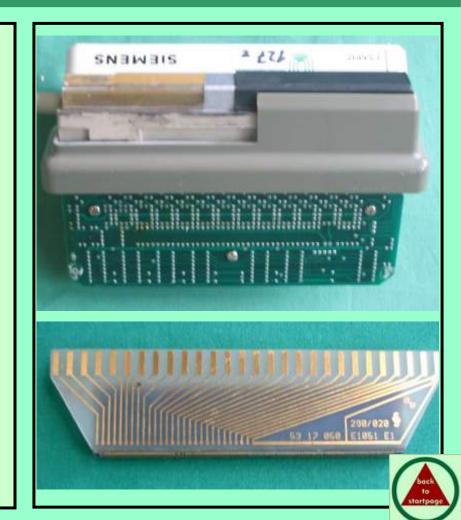
Array not yet with dynamic focusing, only one transformation layer. Already with micro divisions, however. The assembly was essentially aligned for separate modules. Image quality not satisfactory with 2.5 MHz

No. 127 SK

description: Multison 400

type of device: B-Mode producer/distributor: Siemens AG, Erlangen

development:


frequency: 2.5 MHz time of production: beginning 1975

Linear Array

First generation linear array, not yet with dynamic focusing, with only one transformation layer, however already with micro divisions.

The assembly was essentially aligned for separate modules.

Image quality not satisfactory.

description:

Imager 1000

type of device: B-Mode producer/distributor: Siemens AG, Erlangen development:

frequency: 2.5 and 3.5 MHz time of production: beginning 1977

Early linear array system, fix focus in transmitting and receiving.

No dynamic focusing yet.

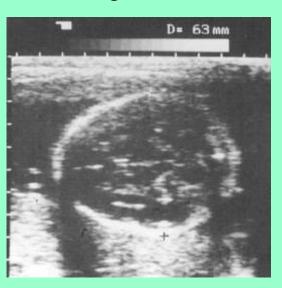
Only two frequencies: 2.5 and 3.5 MHz.

description: Imager Serie 2000

type of device: B-Mode producer/distributor: Siemens AG, Erlangen

development: 1979/1980

frequency: 3.5 and 7 MHz time of production: 1980-1985


Real-time B-mode, 3.5 and 7 MHz.

Electronic focusing, microprocessor controlled. Alphanumerical input of patient's data.

Electronic measuring auf distances.

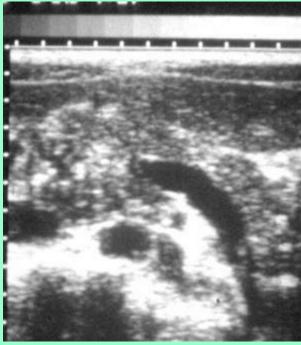
Mainly used for Obstetrics and Gynecology, also for abdominal diagnostics.

Fetal skull, 24th week of pregnancy (Holländer)

description:

Imager 2380

type of device: B-Mode producer/distributor: Siemens AG, Erlangen


development: 1978/80

frequency: 2.5 and 3.5 MHz time of production: since 1980

Real Time B-Mode, 2.5 and 3.5 MHz.

Dynamic focusing (receiver). Electronic multi-caliper for measuring distance, circumference, area and volume. Storage of measurements.

chronic calcified pancreatitis

description:

Sonoline 1000

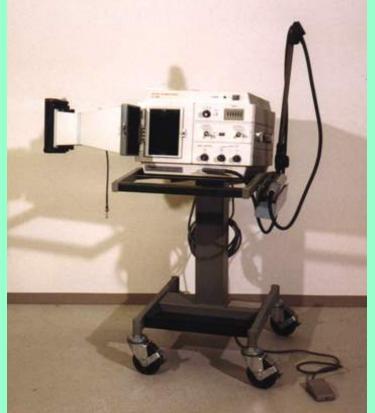
type of device: B-Mode producer/distributor: Siemens AG, Erlangen

development:

frequency: 3 and 4 MHz time of production: 1983

Portable real-time system, linear array, 3 and 4 MHz. Dynamic focusing, zooming, caliper for measuring distance, circumference, area, volume, time and biometrical data. Mainly in use for Obstetrics.

description: Linear Scanner LS 1500



type of device: B-Mode producer/distributor: Picker Int., USA

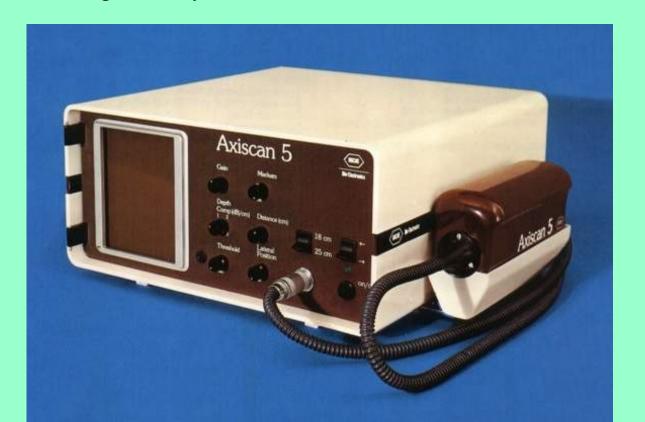
development: 1979

frequency: 3 and 5 MHz time of production: Since 1979

Real Time B – Mode, linear array, 3 and 5 MHz Display on X – Y monitor. Storage.

description: Axiscan 5 A

type of device: B-Mode


producer/distributor: Roche / Kontron

development:

frequency: 2 MHz

time of production: 1976 - 1981

Real-time B – Mode, linear array, 2 MHz. Portable. 64 elements, 8 of them active for one line of the image. Mainly in use for Obstetrics.

description: Kontron Sigma 20

type of device: B-Mode producer/distributor: Kontron Instruments

development:

frequency: 3.5 and 5 MHz time of production:

Real-time B-Mode, linear phased array. Also TM-Mode.

description:

CS 9200

type of device: B-Mode

producer/distributor: Hitachi/Picker

development:

frequency: 3.5 - 7.5 MHz

time of production:

1990-1995

B-mode system with curved and linear array probes; here with 3.5 MHz curved array for applications in Internal Medicine.

Origin: Klinikum Ibbenbueren

German Ultrasound Museum

Collection (Last Update June 2013)

- From material-testing to A-Scan
- B-Scan:
 - Compound scanner
 Mechanical real-time devices
 - Electronic real-time devices

Milestones of development 136 - 142

- Special developments
- Doppler-systems
- Other objects
- Cut transducers without apparatuses

description: Diasonics RA1

type of device: B-Mode producer/distributor: Diasonics/Siemens AG / Doppler development: 1978 -1980

frequency: 2 - 7.5 MHz time of production: since 1980

Real-time B-Mode. Mechanical sector scanner. The probe for "small parts" is coupled with a pw-Doppler-probe (see No.136 SK1). Documentation by instant camera.

In the 3.5 MHz probe three sector scanners are synchronized for a wide field of view (136 SK2).

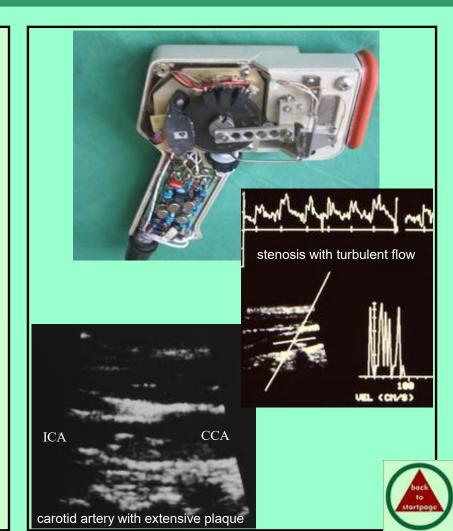
A special scanner arm enables automatic positioning. The RA1 was the first "high end" system.

No. 136 SK1 description: RA1 Small -Parts Probe

type of device: B-Mode producer/distributor: Diasonics/Siemens AG

Doppler development:

frequency: 7.5 / 2 MHz time of production: 1978-1980


"Small-Parts" Duplex Probe

Mechanical sector scanner (wobbler) with high resolution; separate pw-Doppler. Both probes are joined in one oil-filled case.

Position, size and angle of the Doppler sample volume can be adjusted within the field of view of the B-Mode probe.
Crude spectral display.

Frequencies: 7.5 MHz B-Mode

2.0 MHz Doppler Mode

No. 136 SK 2

description:

RA1 Mehrfachsonde

type of device: B-Mode producer/distributor: Diasonics/Siemens AG

development:

frequency: 3.5 MHz time of production: 1978-1980

Mechanical multi transducer system

Three synchronously rotating transducers for displaying larger body surfaces. Each transducer displays a pre-defined part of the sectional plane. The transducers are alternately activated.

The whole picture is displayed by combining the three separate scans (see No. 136). Relatively low frame rate.

description: Color Doppler SSD 880

type of device: B-Mode, producer/distributor: Aloka Co, Tokyo

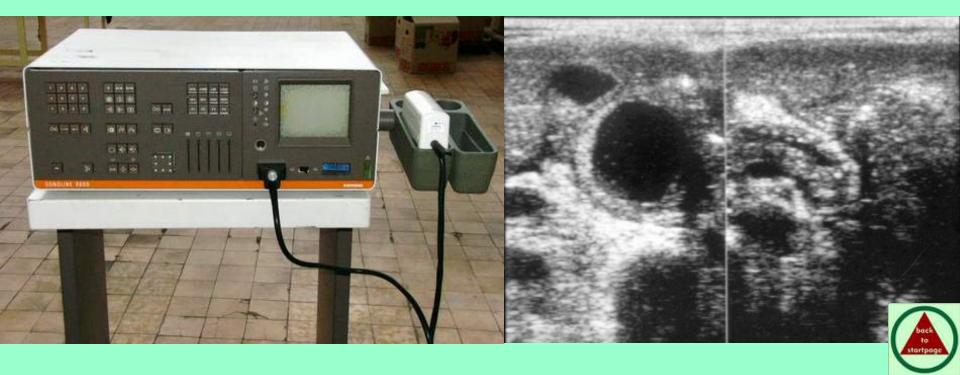
Color-Doppler development: 1980-1985

frequency: time of production: 1985-1992

Real-time B-Mode, phased array technique with integrated color-Doppler (Color Coded Duplex). First system with integrated combination of A-Mode, TM-Mode, B-Mode, Doppler-Mode (cw- pw- and directional color Doppler).

No. 138 description:

Sonoline 8000


type of device: B-Mode producer/distributor: Siemens AG, Erlangen

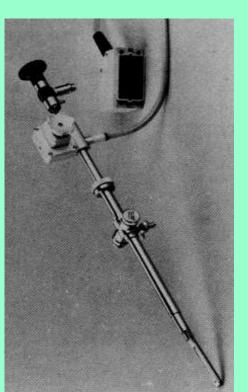
development: 1979-1982

frequency: 2.5-7.5 MHz time of production: 1982-1985

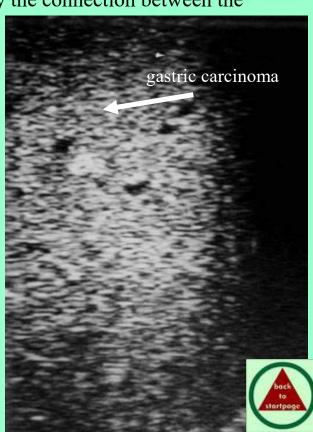
Real-time B-Mode, linear array technique. Dynamic focusing (transmitter and receiver). First fully digitalized ultrasound device.

pancreas pseudo-cyst / chronic pancreatitis

No. 138 Z 1 description: Ultrasound Laparascope UM 2 for Sonoline 8000


type of device: B-Mode, producer/distributor: Siemens AG, Erlangen

development: since 1982


frequency: 7.5 MHz time of production: prototype 1983

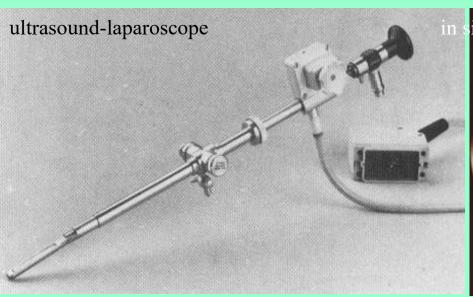
Linear array for laparoscopy with 96 single elements. Sterilization possible with cold gas. Dynamic focusing by digital signal processing in 16 channels. Each element is connected to the Sonoline 8000 by a separate coaxial cable. This intricate requirement was not easy to fulfill, especially the connection between the

flexible array and the fixed laparoscopic tube.

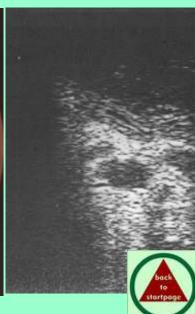
No. 138 Z 2

description: Laparascope for Sonoline 80

type of device: Linear Array producer/distributor: Siemens AG, Erlangen


development: 1982

frequency: 7.5 MHz time of production: prototype

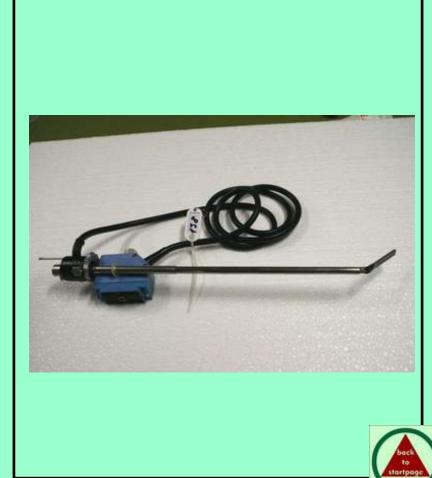


Ultrasound transducer at the end of a 30 cm long probe, which can be inserted through the 10 mm wide tube of a customary optical laparoscope. The linear transducer has an active length of 35 mm. It is maneuverable in the ultrasound plane from -10° to +45°. Dynamic focusing by digital signal processing in 16 channels. Sterilization possible with cold gas.

Each of the 96 single elements is connected to the Sonoline 8000 by a separate coaxial cable. This intricate requirement was not easy to fulfill, especially the connection between the flexible array and the fixed laparoscopic tube.

No. 138 SK 1

description: Sonoline 8000


type of device: B-Mode, producer/distributor: Siemens AG, Erlangen

1982-1983 development:

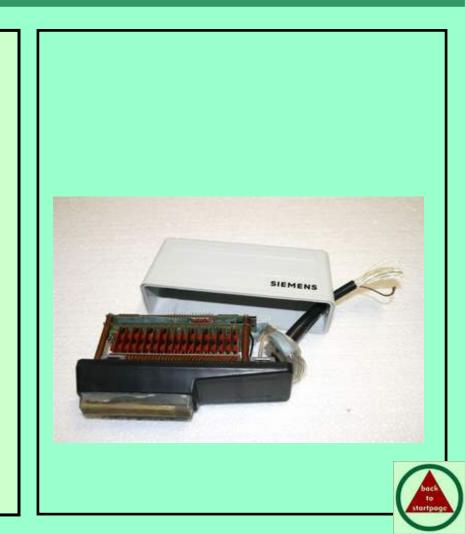
7.5 MHz time of production: 1983-1985 frequency:

Linear Array

Linear array for laparoscopy with 96 single elements. Sterilization possible with cold gas. Dynamic focusing by digital signal processing in 16 channels. Each element is connected to the Sonoline 8000 by a separate coaxial cable. This intricate requirement was not easy to fulfill, especially the connection between the flexible array and the fixed laparoscopic tube.

No. 138 SK 1

description: Sonoline 8000


type of device: B-Mode, producer/distributor: Siemens AG, Erlangen

development:

frequency: 5 MHz time of production: 1979 - 1982

Linear Array

Linear array, 5 MHz, with 128 single elements. First system with completely digitalized signal processing including beam forming.

description: Combison 330 Voluson

type of device: B-Mode, producer/distributor: Kretztechnik, Zipf

3D-Imaging, Colorflow Doppler development: 1986

frequency: 3.5-7.5 MHz time of production: since 1989

B-Mode with mechanical sector, linear und curved array technique. Volume calculation with color-coded images. **First 3-dimensional ultrasound system** with surface view, translucent display and volume calculation. Various special probes, e.g. for intracavitary applications,

spectral- and color Doppler.

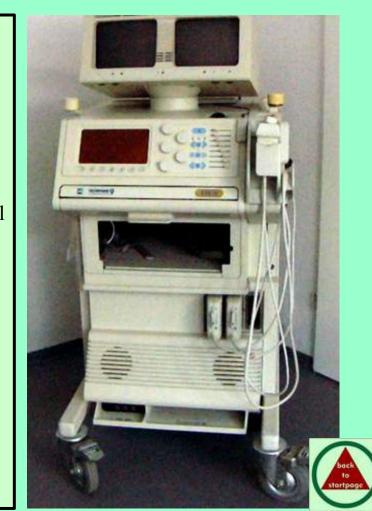
description: ATL Ultramark 9 HDI

type of device: B-Mode, producer/distributor: Advanced Technology Labs.

M-, TM-Mode, Colorflow Doppler development:

frequency: 2 - 10 MHz time of production: 1988-1992

At that time ATL's top ultrasonic device, and with 565 lbs (256,3 kg) very impressive. For use in Obstetrics, Gynecology, Urology, Cardiology, small parts, vascular lab, Neurology. Probes with phased, annular, linear and curved arrays; also mechanical sector, TEE, vaginal endo-probes, intraoperative probes. B-mode triggering by ECG optional.


Our system is equipped with a linear probe of 5-7 MHz and a sector probe of 2-3 MHz including software for intracranial investigations. M-mode also works in color.

Separate monitors for black-and-white and for colored displays. Software-controlled multi-function switches at a touch-sensitive gas-discharge plasma display.

Independent steering of B-Mode display, colorflow-Doppler and cw-Doppler.

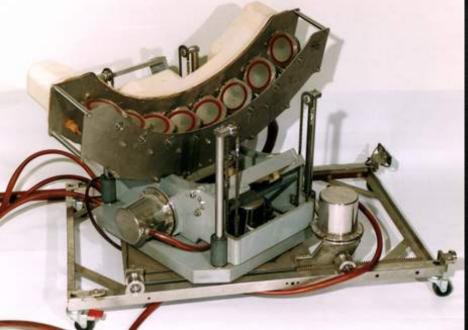
Frame rate up to 156/s, depending on depth and angle.

Origin: Klinikum Ibbenbueren

description: Octoson

type of device: B-Mode

producer/distributor: Ausonics, Sydney


development:

1978

frequency: 3 MHz

time of production: since 1978

Very complex Compound system, simultaneous mechanical scanning by 8 large statically focused transducers within a water tank. Connection to patient by means of a large plastic examining surface upon which the patient lies. Originally designed for gynecological use, the Octoson was later modified for mamma inspections.

German Ultrasound Museum

From matter-testing to A-Scan 001 - 056

B-Scan:

Compound scanner 113 - 114

Mechanical real-time systems 115 - 123

Electronic real-time systems 124 - 135

Milestones of development 136 - 142

Special developments 140 - 160

Doppler-systems 260-282

Other objects 346 - 391

Cut transducers without apparatuses 483 - 493

Therapy devices 300-305

Ophthalmologic devices 306-320

description: ENT - Detector

type of device: Echo Detector producer/distributor: VEB

Ultraschalltechnik, Halle

development: 1978

frequency: 4 MHz time of production: since 1979

Echo-Detector, pocket-size.

This device showed the existence (pathological finding) or none-existence of the echo of the back wall of the maxillary sinus via either a red or a green LED.

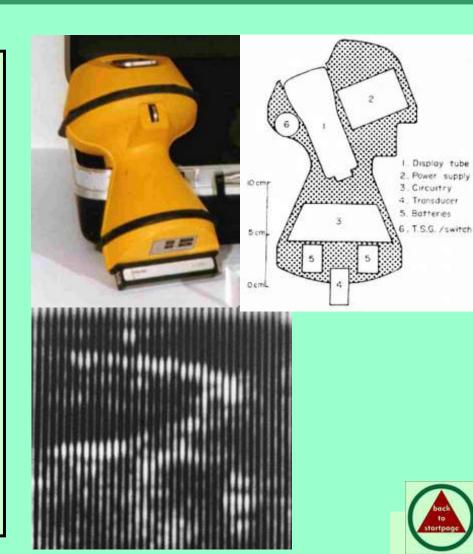
description:

MiniVisor

type of device: Echo Detector producer/distributor: Organon Teknika Corp.

development:

frequency:


3.12 MHz

time of production: 1979

Portable Ultrasound Scanner

Battery-powered scanner with integrated linear-array. Contrary to customary array systems with many elements, of which several were activated simultaneously during one sounding period, this array had only 20 elements of which just 1 at a time was activated – similar to the Eye-Scanner (system Buschmann / Kretz) with 12 single elements.

At that time smallest scanner, 1,5 kg, c. 26 x 16 x 16 cm. Display only 33 x 43 mm. Just 1 switch for modulating amplification.

No. 054 Z

description:

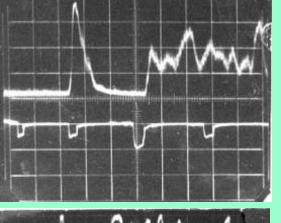
Device for Bone Scanning

type of device: A-Mode producer/distributor: Institute for Biophysics, Halle

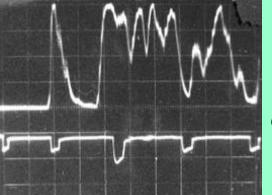
development: 1968

frequency: 2.5 to 7.5 MHz

time of production: 1968


Scanner to be connected to the A-Mode device series GA 10 for measuring the speed and the attenuation of sound at the tibia in vertical and in oblique direction.

Model II


See device No 54 GA 10

Origin: R. Millner, Halle

normal

osteoporosis

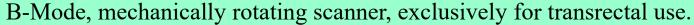
description: Gestation detector TuR-TD 20S

type of device: Doppler producer/distributor: VEB Transformatoren

und Röhrenwerk Dresden

frequency: 2 MHz time of production: 1979

Portable Doppler system for the detection of gestation. Also used in human medicine on an experimental basis.

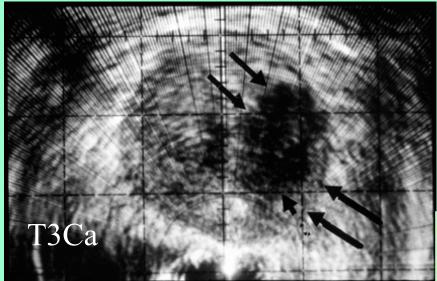


No. 145 description: Trans Rectal Scanner 9526

type of device: B-Mode producer/distributor: Brüel & Kjaer, DK

development: 1978 - 1979

frequency: 3.5 MHz time of production: 1979



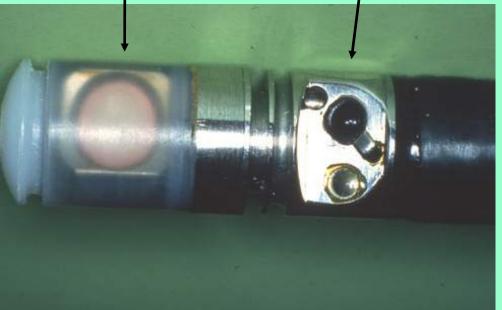
Coupling by a water-filled standoff.

Origin: B. Frentzel-Beyme, Berlin

description: Ultrasonic Endoscopic Probe UM 2

type of device: 360° Sector Scanner producer/distributor: Aloka/Olympus

development: Since 1981

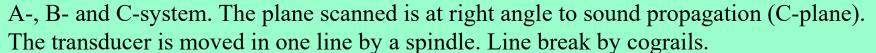

frequency: 7.5 MHz


time of production:

Mechanical 360° sector-scanner at the tip of a gastroscope with oblique optics for viewing. Originally developed for the inspection of organs next to the stomach, such as the pancreas; mostly used for the evaluation of the walls of the esophagus and the stomach - complementary

to optical endoscopy.

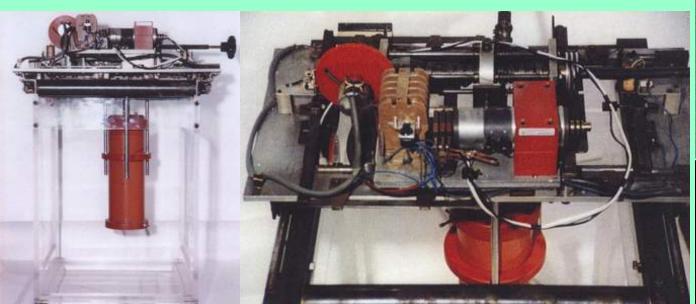
See also No. 138, Sonoline 8000. ultrasound transducer optics

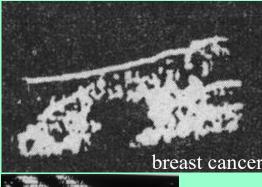

description: Focoscanner

type of device: A-, B-, producer/distributor: Instit. M. von Ardenne, Dresden

and C-Mode development: 1959/60

frequency:


3 MHz time of production: 1960



For sound generation a virtual punctiform sonic source is generated in the level of the object by a lens and this performs the scanning procedure.

All echoes are depicted in the same focal intensity. Scanning time about 30 sec.

If a stone was localized, a fragmentation could be tried, as the maximum power output was 400 Watts. - Experimental device without clinical application.

description:

Sonoline SI 1200

type of device: B-Mode, producer/distributor: Siemens AG, Erlangen

development:

frequency: 2.5-3 MHz time of production:

Phased array device specially constructed for cardiological diagnostics. To minimize electronic layout, the focusing is done by 2 x 48 channels with alternating transmission cycles.

Color-coding of blood-flow (duplex mode).

German Ultrasound Museum

001 - 056 From matter-testing to A-Scan **B-Scan:** 113 - 114 **Compound scanner Mechanical real-time systems** 115 - 123 124 - 135 **Electronic real-time systems** 136 - 142 **Milestones of development** 140 - 160 **Special developments Doppler-systems** 260 - 282Other objects 346 - 391 Cut transducers without apparatuses 483 - 493Therapy devices 300-305 Ophthalmologic devices 306-320

Collection of Devices, last update June 2016

description: Pocket Doppler

type of device: cw-Doppler producer/distributor: Mediatronics, Geneva

development: 1967

frequency: 8 MHz time of production: since 1968

Cw-pocket Doppler, 8 MHz

Simple yet highly-sensitive non-directional device.

First investigations of the fronto-orbital arteries, so called indirect Doppler sonography.

Origin: R. Müller, Basel

description: Fetal Puls Monitor FM 2

type of device: cw-Doppler producer/distributor: Sonicaid/Kranzbühler

development: 1968

frequency: 1.5 MHz time of production: 1968-1971

Cw-Doppler system with multiple elements transducer 1.5 MHz.

Integrated thermal recorder.

First device for continuous monitoring of fetal heartbeats.

Origin: Kranzbühler, Solingen.

description: Parks Model 802

type of device: cw-Doppler producer/distributor: Parks Electronics, USA

development: 1966-1968

frequency: 5 MHz time of production: since 1968

Cw-pocket Doppler system, non-directional, 5 MHz. Used for first recordings of intracardial flow (Seipel) Origin: L. Seipel, Tübingen.

description: Parks Model 806

type of device: cw-Doppler producer/distributor: Parks Electronics, USA

development: 1969

frequency: 5 MHz time of production: 1969 - 1970

Bidirectional Doppler system, 5 MHz. Direction of blood flow is indicated by 2 separate gauges and by 2-chanel acoustics. Outlet for printer.

Model 806 was the first bidirectional model by Parks, soon to be replaced by Model 906. Origin: R. M. Schütz, Lübeck.

description: Parks Model 906

type of device: CW-Doppler

producer/distributor: Parks Electronics, USA

development:

1970

frequency: 5, 10 MHz

time of production: 1970

Two frequency bidirectional cw-Doppler system, 5 and 10 MHz.

Flow direction is indicated by two gauges as well as acoustically.

Outlet for printer. Replacement of Model 806.

Origin: R. M. Schütz, Lübeck.

description:

DUD 02

type of device: CW-Doppler producer/distributor: Delalande Electronique, F

development: 1969

frequency: 4 MHz

time of production: Since 1970

Cw-Doppler with directional information, 4 MHz. Zero-crossing-technique displays sum of frequency shift. External recorder. With a pivot arm and an EDM, this system was deployed for "Doppler-angiography". Origin: B. Widder, Ulm

description:

DUD 400

type of device: cw-Doppler producer/distributor: Delalande Electronique, F

development:

1970-1972

frequency: 4 MHZ

time of production: Since 1972

Cw-Doppler, 4 MHz.

Bidirectional system with integrated thermal printer; connections to external printer,

EKG. Wall filter 10, 30 and 100 Hz. Display of averaged Vi and Vm. Origin: I. Neuerburg-Heusler, Engelskirchen.

description:

UDOP 1

type of device: CW-Doppler producer/distributor: Popp Elektronik, Halle

development: 1960-1970

frequency: 2 MHz time of production: 1970-1980

Cw-Doppler for fetal monitoring, 2 MHz.

Acoustic information of fetal cardiac actions. First Doppler system in the GDR.

The picture [left] displays a picoskope or oscilloscope used for optical visualization of the signal.

Origin: A. Millner, Halle

No. 268 description: UDOP 2

type of device: CW-Doppler producer/distributor: VEB US-Technik, Halle

development: 1968-1969

frequency: 2 MHz time of production: 1969-1975

Cw-Doppler system with acoustical information for monitoring of fetal heart actions, 2 MHz. Similar to UDOP 1, but further improved by addition of signal filters and outputs for tape recorder and printer for continuous monitoring.

Origin: R. Millner, Halle

No. 269 description: UBD 2

type of device: cw-Doppler producer/distributor: Instit. for Biophysics, Halle

development: 1974-1976

frequency: 2-10 MHz time of production: 1976-1980

Cw-Doppler system, bidirectional, 2-10 MHz.

Acoustical output, sockets for printer and PC.

System for the center of a vascular Doppler lab, intended for registering flow and volumes, and for determining flow indices, spectral distribution and power.

Origin: U. Cobet, Halle.

description:

FD 410

type of device: CW-Doppler producer/distributor: VEB US-Technik, Halle

development: 1975

frequency: 4 MHZ

time of production: Since 1977

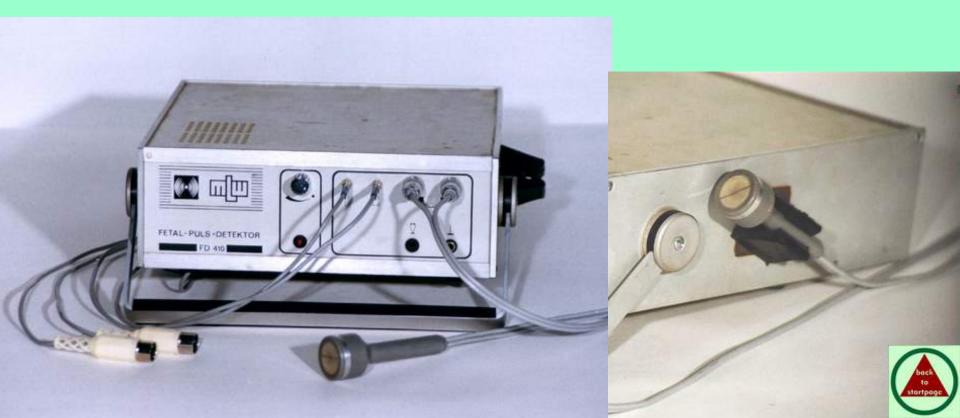
Cw-Doppler system for fetal monitoring, 4 MHz. Sockets for printer and tape recorder.

Used for continuous monitoring with special probes.

Also deployed for blood flow monitoring (unidirectional).

Origin: R. Millner, Halle

description: FD 410 revised version



type of device: cw-Doppler producer/distributor: VEB US-Technik, Halle

development: 1977

frequency: 4 MHz time of production: 1978-1985

Fetal pulse detector, revised version, 4 MHz Also deployed for blood flow monitoring (unidirectional). Origin: R. Millner, Halle.

description:

Eucoton S

type of device: CW-Doppler producer/distributor: Siemens AG, Erlangen

development:

frequency: 3-4 MHz

time of production: 1970

Simple cw-Doppler system for monitoring of fetal cardiac actions, 3-4 MHz.

description:

MDG 2

type of device: cw-Doppler producer/distributor: Kretztechnik, Zipf

development: 1969

frequency: 2 MHz time of production: Since 1970

Cw-Doppler system for monitoring of fetal heart actions, 2 MHz. Interchangeable probes; sockets for headsets and tape recorder.

description:

Minivason 9

type of device: CW-Doppler

producer/distributor:

Kretztechnik, Zipf

development:

1972-1973

frequency: 6-8 MHz

time of production: 1973-1979

Cw-Doppler system, pocket size, battery-powered.

Small loudspeaker, socket for headset, replaceable probe.

This sturdy device – an enhanced version of the "Minifeton" (No. 278) - was mainly used in out-patient care, also in accidents.

description:

TC 2-64

type of device: pw-Doppler producer/distributor: EME, Überlingen

development: 1982

frequency: 2 MHz time of production: since 1983

Pw-Doppler system, 2 MHz, developed by Eden Medizinische Elektronik Überlingen in cooperation with Neurosurgeon Rune Aaslid. First commercially available Doppler system for recording of transcranial (intracranial) blood flow by pulsed Doppler (TCD). Also first to include a 64-point spectral display of the Doppler-signal after fast Fourier transformation (FFT) in the same device. TCD monitoring with the probe fitted to the skull by an elastic strap.— Type TC2-64B was also equipped with 4 and 8 MHz probes for peripheral vascular examinations.

Origin: R. M. Schütz, Lübeck.

description:

Minifeton

type of device: cw-Doppler producer/distributor: Kretztechnik, Zipf

development: 1969

frequency: 2 MHz time of production: 1970-1979

Cw-Doppler system for detection and monitoring of fetal heart beats, 2 MHz. 2 models: a) simple pocked Doppler device with acoustical output. b) later sized as an ordinary probe but equipped with remarkable functions: Automatic battery charging in a mount, acoustical output either by stethoscope or via a FM-transmitter by a standard radio.

description:

Doppler 762

type of device: CW-Doppler

producer/distributor: Kranzbühler

development:

frequency: 4 and 8 MHz

time of production: Since 1977

Cw-Doppler system with frequency filter, calibration and integrated printer. Connects to "frequency analyzer 8106" for spectral analysis (FFT).

description: Microview

type of device: Doppler-, B-Mode

producer/distributor: Picker

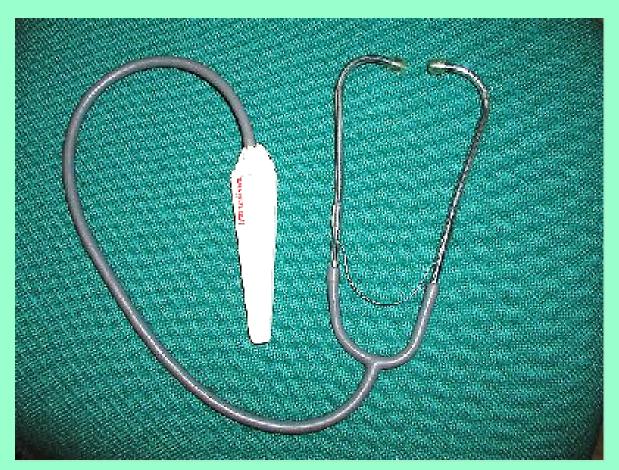
development:

frequency: 10 MHz

time of production: since 1978

Microview Duplex. Mechanical linear scanner with high resolution for small partsscanning, including Doppler sonography for superficial blood vessels. The constructional design of the scanner allowed coupling without pressure. Origin: H. J. Schulz, Hamburg

description: Doppler-Stethoscope


type of device: CW-Doppler

producer/distributor: Kranzbühler

development:

frequency: ?? time of production: ????

Doppler – System

description: Vasoflo 2

type of device: CW-Doppler development:

producer/distributor: Sonicaid Ltd.

frequency: 2, 4 and 8 MHz

time of production: 1983-1988

Bidirectional cw-Doppler System with three frequencies for vascular and for cardiological examinations. Battery/mains operation.

Outphaser separation of forward and reverse flow. This separate flow can be displayed by printer on thermo-sensitive paper, by LEDs and on a none-fade digital memory scope. Acoustical output via integrated loudspeaker or headset (two channel).

Calibration pulses and zero run at the end of every recording. Origin: Klinikum Ibbenbueren

German Ultrasound Museum

001 - 056 From matter-testing to A-Scan **B-Scan:** 113 - 114 **Compound scanner Mechanical real-time systems** 115 - 123 124 - 135 **Electronic real-time systems** 136 - 142 **Milestones of development** 140 - 160 **Special developments Doppler-systems** 260 - 282Other objects 346 - 391 Cut transducers without apparatuses 483 - 493Therapy devices 300-305 Ophthalmologic devices 306-320

Collection of Devices, last update June 2016

description: Measuring track in oil bath

(new)

type of device: Accessory producer/distributor: Dept. of Ophthalmology, Würzburg University

development:

frequency: time of production: 1985

This measuring system was developed by Buschmann in the Ophthalmology department of the Charité Berlin, 1966. Our device was built 1985 in Würzburg for determining the sensitivity of the transducer.

Origin: W. Buschmann, Würzburg.

description: Measuring track in oil bath

(old)

type of device: Accessory producer/distributor: ??

development:

frequency: time of production:

description: Uni Quatro

type of device: Multiformat camera producer/distributor:

documentation

development:

frequency:

time of production: Since c. 1981

Early in the 1980s the Uni Quatro was introduced in (West) Germany. Before that, for documentation only Polaroid pictures could be shot (1 shot \(\delta\)1 € or 1.4 \$) - or negatives on 35 mm films (later correlation used to be somewhat difficult).

The Uni Quatro documented on radiographic film - 4 frames, initially. Therefore it was first deployed in Radiology and later in other medical disciplines. As the camera improved, one could choose between 8, 4, 2 or just 1 frame per sheet.

description: Acoustic pressure scale

type of device:

producer/distributor: VEB Transformatoren-

und Röhrenwerk, Dresden

development:

frequency:

time of production: 1960

Acoustic pressure scale for determining the acoustic power for therapy (> 9.1 Watts). The power or intensity is specified in Watts per square centimeter.

Origin: R. Millner, Halle

No. 390 SK

description:

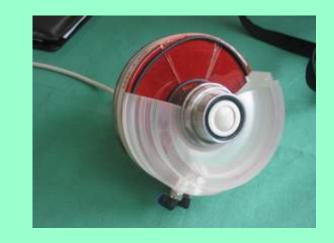
Sonocur plus Siemens AG, Erlangen

type of device: B-Mode

producer/distributor:

development:

frequency: ??


time of production:

1984

Shock wave generator + Sector scanner

US-therapy + B-scan. Combination of a shock wave generator for therapeutic use (here for pain treatment) with a mechanical sector scanner displaying the body surface being treated.

The initially plane shock wave is focused on the zone to be treated by a polystyrene lens - patient coupling by a water-filled standoff.

description:

Sterling

type of device: B-Mode

Philips producer/distributor:

development:

frequency: ?? time of production: 1990 - 1993

B-Mode-Device

German Ultrasound Museum

001 - 056 From matter-testing to A-Scan **B-Scan:** 113 - 114 **Compound scanner Mechanical real-time systems** 115 - 123 124 - 135 **Electronic real-time systems** 136 - 142 **Milestones of development** 140 - 160 **Special developments Doppler-systems** 260 - 282346 - 391 Other objects Cut transducers without apparatuses 483 - 493Therapy devices 300-305 Ophthalmologic devices 306-320

Collection of Devices, last update June 2016

No. 481 SK

description:

type of device: B-Mode

producer/distributor:

development:

frequency: time of production:

Array transducer

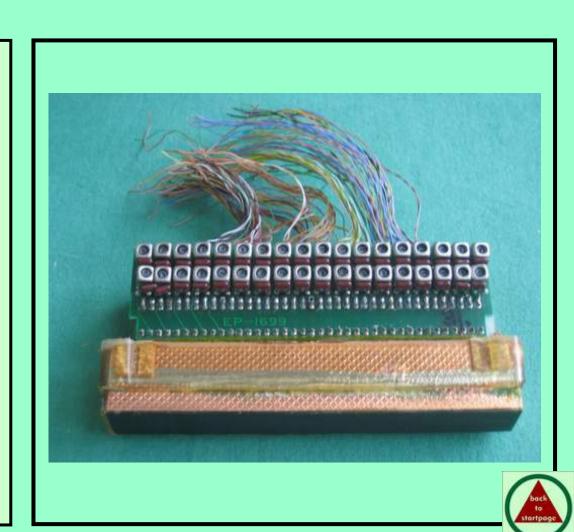
Example of adaptation layers

No. 482 SK

description:

type of device: B-Mode

producer/distributor:


development:

frequency: time of production:

Array transducer

Example of wiring

No. 483 SK

description: Accuson transducer

producer/distributor: Accuson/Siemens AG

type of device: B-Mode

development:

4 MHz frequency:

1995 time of production:

Phased Array Transducer

Transducer of an electronic sector scanner (phased array) with 128 single elements. Each element is connected to the ultrasonic device by an individual coaxial cable with a diameter of about 0.6 mm, and each element is triggered by a separate cable.

No. 484 SK

type of device: B-Mode

development:

 $3.5 + 5 \, \text{MHz}$ frequency:

description: Phased array

producer/distributor: Siemens AG

1984 time of production:

Phased array scanner

Acoustical parts for transducers of an electronic sector scanner (phased array) with 64 single elements.

Each element is connected to the ultrasonic device by an individual coaxial cable and is triggered by a separate cable.

No. 485 SK

type of device: B-Mode

development:

7.5 MHz frequency:

description: Curved Array

producer/distributor: Accuson/Siemens AG

1998 time of production:

Curved Array (vaginal probe)

Endoprobe for vaginal diagnostics. Curved array with 128 single elements and a 90° angle of view. Fixed image plane.

Guide slot for visually controlled punctures.

No. 486 SK

description:

type of device: B-Mode


producer/distributor:

development:

frequency:

time of production:

Mechanical sector scanner for teeth

No. 487 SK

type of device: B-Mode

development:

frequency: 5-7.5 MHz

description:

producer/distributor:

time of production:

Endoprobe Siemens AG, Erlangen

1989-1990

Endoprobe (rectal probe)

Mechanical sector transducer for endosonography. Designated especially for transrectal scanning. The mechanical drive makes it possible to choose the location of the sectional plane.

No. 488 SK

type of device: B-Mode

frequency: 20 MHz

description:

producer/distributor:

time of production:

Sector Scanner
IVUS/Siemens AG
1984-1986

Sector scanner

Mechanical sector scanner for intravasal sonography. The ultrasound transducer (20 MHz) is fixed to the tip of the catheter. A rotating tilted mirror provides a 360° scan. This mirror is driven by a guide wire at the entrance of the catheter. Catheter is built for single use only.

No. 490 SK

type of device: B-Mode

frequency: 5 MHZ

description:

producer/distributor:

time of production:

Curved Array

Picker

1983-1985

Curved Array

Curved arrays are a variety of linear arrays. They only differ in the way the transducer elements are aligned. The same technology is applied in both cases.

In linear arrays – as the name implies – the elements are arranged in a straight line, while in curved arrays this line is curved along a more or less rounded arc. The image format of the curved array thus resembles a ring segment. Curved arrays have the advantage – depending on the field of application – of combining the characteristics of both a sector scanner (small connecting area) and a linear array (large field of view).

No. 491 SK

description:

Endoprobe

type of device: B-Mode

producer/distributor:

Matsushita/Siemens

frequency: 5-7.5 MHz

time of production:

1985-1988

Endoprobe (vaginal probe)

Mechanical sector scanner for endosonography, especially designed for vaginal examinations.

No. 492 SK

description:

Multiline Array

type of device: B-Mode

producer/distributor:

Siemens AG, Erlangen

frequency: 3.5 MHz

time of production:

1981

Prototype of a the very first multiline array. By subdividing an array system into several parallel and separatelyactivated array lines, a dynamic focusing perpendicular to the direction of the scanning is possible (annular array) – unlike the array transducers with just one line of arrays which are still common today. In theory this method should have great diagnostic advantages. The high technological and electronic complexity of the method hasn't found wide-spread use in ultrasound equipment.

No. 493 SK

description:

Linear Array

type of device: B-Mode

producer/distributor:

Matsushita/Siemens

frequency: 5 MHz time of production: 1985

Linear Array

Example of the delicate architecture of a linear array structure. Here each single circuit-relevant element is again mechanically subdivided, in order to suppress unwanted oscillations. For attenuation the ceramic elements are embedded at the back in a supporting cushion to prevent resonances.

Furthermore, two transformational layers with different wave impedance are visible. They are necessary to adapt the acoustical impedance of the ceramic elements to biological tissues. This adaptation leads not only to better sound transmission; it also leads to an enlargement of the usable ultrasound frequencies and thus to better image quality. The top layer is formed by a so-called silicon lens, which not only protects the arrays but also helps focus the ultrasound beam at a right angle to the scan direction, contributing to better image quality.

German Ultrasound Museum

- From matter-testing to A-Scan
- B-Scan:
 - Compound scanner
 Mechanical real-time devices
 - Electronic real-time devices
- Milestones of development
- Special developments
- Doppler-systems
- Other objects
- Cut transducers without apparatuses
 - Therapy devices

description: Impulsaphon M33 GILe

type of device: Therapy Device producer/distributor: Ultraschall-Gerätebau

Dr. Born GmbH, Frankfurt/M (D)

developed by:

frequency: 1000 kHz

time of production: beginning 1951

Ultrasonic therapy device for the known indications e.g. in general medicine, rheumatology and dermatology. Handheld applicator connected to console by cable. Coupling of the applicator to the external skin with coupling fluid. (Exhibit serial no. 1011) *Origin: H.G. Trier, Bonn*

Fig. left: Original product advertisement for the transducer of this device from 1955.

(from: Zschr. Ultraschall in Medizin u. Grenzgebieten, Vol. 8, no. 1, March 1955, Ed. K. H. Woeber, Bonn).

Fig. right: Console: Connecting load 100 VA, time switch, controller W/ cm² in 4 steps from 0 - 3 W/cm². Impulse- and continuous operation, controller for switch options (ratio ON/OFF) in 4 steps (1/20, 1/10, 1/5, continuous operation). Tuning controller for the applicator with indicating instrument, control of coupling. Nominal frequency 1000 kHz; max. acoustic power 15 W, emitting surface of the applicator 5 cm², average power density 3W/ cm².

FTZ check no. B 019-52. Type-certified PTB V-U 009/53.

description: Piezo PUK 143

type of device: Therapy Device producer/distributor: Piezo-Werk H. EVERTZ

Stockdorf (D)

developed by:

frequency: 1000 kHz

time of production: beginning 1950

Portable set with handle for ultrasonic therapy e.g. in general medicine, rheumatology and dermatology. Hand-held angled applicator, at which tubes of various shape and size for treatment are attached that can be sterilized. Detachable plug connection of cable to console. Features: time switch, 2 controllers for "dosage" und "tuning" with pointer instrument up to 5 W of ultrasonic power. (Exhibit console no. 4456) Origin: H.G. Trier, Bonn

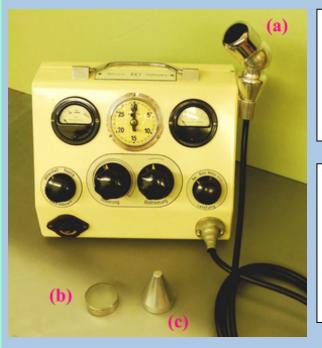
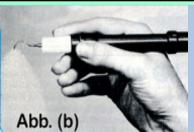


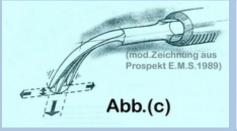
Fig. left: Console for 110/150/220/250 V, AC. (a) angled applicator. (b) and (c)attachable tubes (left below: Plug for cauterization add-on).

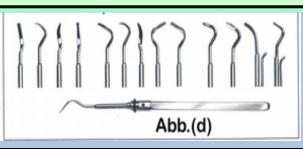
Fig right: Original product advertisement from 1952. (From: Der Ultraschall in der Medizin Vol. 4, advertising section, ed. K.H. Woeber, Bonn, Hirzel-Verlag, Stuttgart 1952.).

description: Sonadent SD 3A

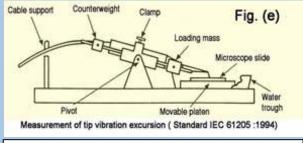
type of device: Ultrasonic Descaler producer/distributor: BANDELIN electronic


(West-) Berlin (D)


developed by: Bandelin, ca. 1970


frequency: 18-60 kHz time of production: since 1970

At the beginning of the 1960 ultrasound was introduced to dental and oral medicine. In addition to applications in conservative dentistry, periodontology, prosthodontics and orthodontics the removal of plaques /tartar at the tooth neck plays an important role. The ultrasonic "Dental Descaler" is composed of an ultrasound generator, a handpiece and of various applicators, which may be attached to the handpiece. In the ultrasonic range of 18-60 kHz a cleansing effect is achieved at the tooth as well as periodontally by scraping and shearing while touching the dental plaques with the applicator, and also by cavitation within the sound fields and by an abrasive effect of the removed calculus particle. Numerous instruments and manufacturers and versions, e.g. the exhibit. *Origin: H.G. Trier, Bonn*



These devices utilize magnetostrictive or piezoelectrical oscillators driven in resonance or frequency-controlled in cw- or pulse-mode. By changing the oscillating applicators (tips or inserts of the instruments - fig. a, b and d) different properties are achieved. Depending on the shape longitudinal, lateral and elliptical oscillations of the tip occur (fig. c). As heat can arise, leading to pain and nerve damage within the tooth, cooling with rinsing liquid orally is necessary. The rinsing system is coupled to the handpiece.

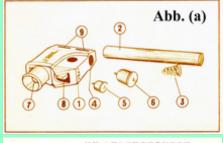
Numerous publications of the method, e.g.:

GOLDMAN, H.M.1961; BALAMUTH, L.1967

SPRANGER 1970, WALMSLEY 1984..

Similar systems emerged as further developments for invasive operations in surgery and neurosurgery (ultrasonic aspirator) and for ophthalmology (phacoemulsification), partly by the same manufacturers. In order to ensure effectiveness and safety, a declaration of ultrasound performance characteristics was established (first standard IEC 1205:1993 and ISO; test procedure e.g. fig. (e)).

description: DAISONIC NSY-62

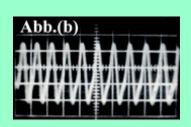


type of device: US Therapy Device producer/distributor: Dainiti Sogyo Co.

Tokyo (Japan)

developed by: Y. Yamamoto, Tokyo, 1961

Handheld device for so called low frequency ultrasound therapy of the eye. The bell-shaped metal applicator is coupled to the closed eyelid by gel. According to clinical studies in Japan with series of treatments (e.g. 20 sessions lasting 10 minutes every 1-3 days) as described by YAMAMOTO and OTSUKA 1963 and later, successful treatments of several eye-diseases and of myopia were reported, e.g. by stimulating the blood circulation in the eye. *Origin: H.G. Trier, Bonn*


A non-linear electro-acoustical converter generates cw-oscillations in the "lower ultrasound range". According to manufacturer at 6 V DC power output 280 mW \pm 10% (electr.) or 100 mW/cm² (acoust.) at the end of the applicator.

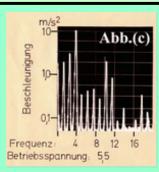

Fig. (a) Device setup: (1) Plug of power supply (2) Handle of battery (3) Batteryspring (4) Aperture for battery handle (5) and (6) applicator Ø 20 mm or 30 mm (7) Screw thread for applicator (8) Switch ON/OFFs (9) Aperture for carrying strap.

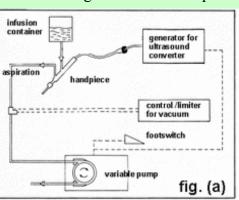
Abb. (b) Cw-oscillation

Abb. (c) Solid-borne sound measurement with acceleration sensor at the applicator (PTB Braunschweig, 1966).

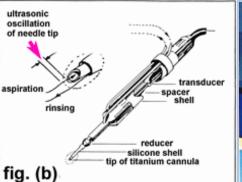
Abb. (d) Newspaper articles of 1964-66 **Abb.** (e) Outpatient department of a Tokyo hospital.

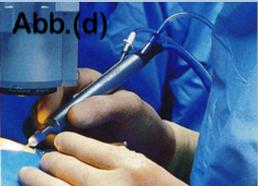
<u>Publications</u>: In <u>Japan</u> numerous publications of YAMAMOTO et al., at first J. Clin. Ophthal.17:295-10,1963. In **Germany**: TRIER: Ultrasonics in Ophthalmology, Symp. Münster 1966, 45-53 (Karger 1967).

description: Cavitron KELMAN **Emulsifier**



type of device: Phacoemulsifier producer/distributor: Cooper Vision


Irvine, CA (USA)


developed by: C. Kelman, since 1965

About 1968 KELMAN established the liquefaction of the eye lens by ultrasound (phacoemulsification). Up to now this became the standard procedure for cataract surgery worldwide. The clouded tissue within the lens capsule is disintegrated and emulsified by the ultrasonic oscillations of a Titanium cannula inserted into the eye, and then aspirated. The ultrasound system and the rinsing-and aspiration-systems are both integrated in one handpiece and one device console. Numerous models and manufacturers.

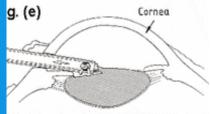


Fig. (a) system layout Fig. (b) handpiece, structure

Fig. (c, d) CAVITRON Kelman type 9000 (hoses schematic)

Fig. (e) implementation at eye lens.

Among the publications:

KELMAN, C.: Amer. J. Ophthal. 67, 464-477 (1969).

TRIER. HG.: Medizintechnik 104. 216-221 (1984)

Sound Field Data of the CAVITRON KELMAN-Device Type 1970(*)

in water, after Kelman (1969)

frequency	40 kHz
wavelength	37 mm
oscillation amplitude	θ,38 μm
needle speed	9,55 m/s (max)
needle acceleration	2,42 x 10 ⁶ m/s ² (max)
ultrasound inten- sity at needle tip	25 W/cm ²
emitting surface of needle	0,00135 cm ²
ultrasound power	0,034 W(max)

(*) magnetostrictive ultrasound generation (devices by other manufacturers can be piezoelectrical)

German Ultrasound Museum

- From matter-testing to A-Scan
- B-Scan:
 - Compound scanner
 Mechanical real-time devices
 - Electronic real-time devices
- Milestones of development
- Special developments
- Doppler-systems
- Other objects
- Cut transducers without apparatuses
- Therapy devices

Ophthalmologic devices

description: Technique of US Probes

type of device: A-mode

producer/distributor: Siemens-Krautkrämer, D

development:

before 1960

frequency: 6 MHZ

time of production: Since 1960

In the 1960ies A-mode probes like these were used for nondestructive material testing (KRAUTKRÄMER). Medical diagnostic devices were only derivates and re-named Echo-Encephalograph or Echo-Ophthalmograph or Echo-Cardiograph (SIEMENS–KRAUTKRÄMER)

Origin: HG. Trier, Bonn.

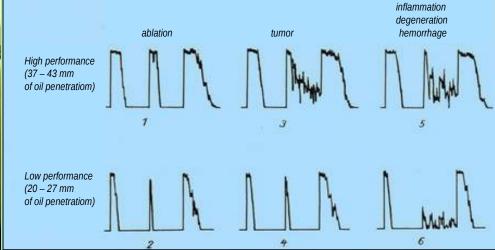
Aufbau eines A-mode-Schallkopfs (SIEMENS-KRAUTKRÄMER, um 1960):

Connectors to device ("large TUCHEL") and cables are HF-shielded. The probe consists of the connector body (with electrical matching) and the replaceable but locked watertight screwed piezoelectic part.

Here: Type AK6, 6 MHz, for ophthalmological examinations.

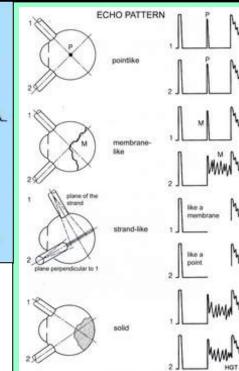
description: Echodevice Series 7000

type of device: A-mode producer/distributor: Kretztechnik AG, Zipf, A


developed by: Bernhard Gerstner and C. Kretz

frequency: 1-14 MHz time of production: 1963

Tube device, developed for Ophthalmology from Type 1000. Precise transient time measurement by electronic marker and Wendel-potentiometer. Enhanced echo sensitivity. This <u>ultrasonic type was the beginning of broader A-mode-tissue diagnostics in Ophthalmology, followed by numerous publications in the 1960ies and 1970ies.</u> Options: Test object and interferometer for distance calibration of the oscilloscope trace; test device for penetration depth in oil (W. BUSCHMANN) to determine the all-over performance. Probes 6-12 MHz (round, flat stalked, spoonlike; Ultrasonolux according to BUSCHMANN). *Origin: HG. Trier, Bonn*

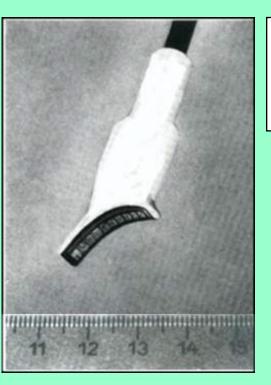


Device type /000 was equipped with one echo trace, switchable from A- to B-mode presentation of the echos. Photo-adapter for 35 mm negative-film

Fig. above: "Scheme of the typical echogram changes depending on the performance " (S.T.E.V., according to BUSCHMANN 1966). Echo performance was calibrated in (mm) of oily penetration.

Fig. right: A-mode diagnostics at the eyeball with typical findings (schematically, modified according K.C.OSSOINIG)

description: 10-elements-array probe with switch device UZGL



type of device: B-mode array producer/distributor: Kretztechnik AG, Zipf, A

developed by: Bernhard and Kretz

frequency: 6-8 MHz time of production: 1964

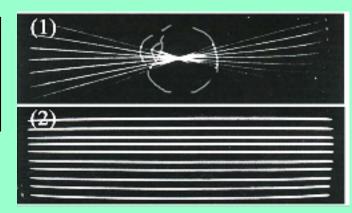

Worldwide first commercial multielement array-probe for 2-dimensional scans, developed by KRETZ together with W. BUSCHMANN, Charité (DDR). Electronic wiring in a common cable via multiconductor plug, leading to the switch device type UZGL, which in turn is connected with the basic device Kretz 7000 or 7900 S. For transmitting and receiving the 10 elements are activated successively by UZGL, a numeric indicator tube showing the runs. Because of a high frame rate the 10 scanner lines are visible simultaneously on the screen. As the array assembly was too demanding for that time, only three specimen were produced, only one of which is preserved. *Origin: H. G. Trier, Bonn*.

Fig. left: Array with 10 elements for 2-dimensional scans (from: *BUSCHMANN*,: *Einführung in die ophthal*. *Ultraschalldiagnostik*. *VEB Thieme*, *Leipzig* 1966).

Fig. below: Electronic switch device type UZGL

Designated scanning deflections at the cathode ray tube, for KRETZ concave array :

- (1) **Intersecting**, here schematically from an array position which displays typical interfaces of the eyeball.
- (2) **Parallel lines,** with selectable line spacing. The lines are only visible with a high level of brightness at the screen. *(mod. after BUSCHMANN, Ultrasonics 3, 1965).*

description: Echo-Gerät (device) 7900 S Series

type of device: A-, B, M-mode producer/distributor: Kretztechnik AG, Zipf developed by:

frequency: 4-12 MHz time of production: beginning 1966

- (a) Console: Two modules are inserted in the TEKTRONIX basis, thereby especially in use for Ophthalmology. A-mode, linear B-mode (manually or engine-driven), M-mode. The screen has 3 operating modes "no storage" with grey scale, "storage" (bistabile storage), and "erase storage". Adjustable gain controls for transmitter and receiver. Electronical scaling. Distance calibration depending on sound velocity. M-mode with variable sweep. Single element probes with 4-12 MHz. Options: eyeball mask that can be filled with water; screen mounts for 35 mm or for Polaroid cameras; chair (exhibit serial-No. 7906). Origin: H.G.Trier, Bonn.
- **(b)** Attachable B-mode mechanics fixed to wall for manual or engine driven linear scanning.

Origin: TIMUG eV, Bonn (W. Haigis, Würzburg).

Photo credits: Devices, KRETZTECHNIK. Findings: H.G. TRIER and F. SAYEGH,

Fig. above: Immersion-B-Mode image of an eyeball:

- 1. Cornea 2. Lens
- 3. Tumour (melanoma of the ciliary body)
- 4. Orbital tissue

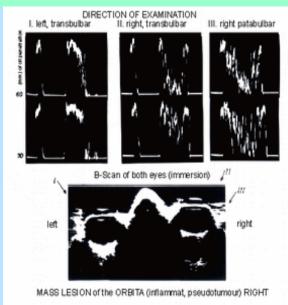


Fig. above: Immersion-B-Mode image of both eyes and orbits

description: Material Testing Device
Echoskop MPT-10

type of device: A-Mode

developed by:

frequency: 0,5 - 4 MHz

producer/distributor: Lehfeldt GmbH

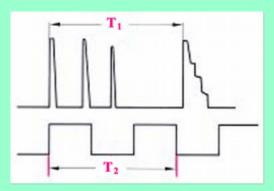
Dr. W. Lehfeldt, 1965

time of production: beginning 1966

Material testing device with plug-in boards and printed circuits, all transistors. Used for through-transmission-technique and echo methods. Scale expansion. Optional electronic scale for transit time, depth gain control. Variable power for transmission and receiving / variable pulse repetition frequency. The MPT-10 was the <u>precursor</u> of models type 4100, 4200, 7100, 7200 by KLN and KRETZ <u>for medical purposes</u>.

Origin: GEFAU eV, Duisburg/Berlin.

description: Impulse Echo-Device Serie 7100 MA


type of device: A-mode producer/distributor: Kretztechnik, Zipf (A)

development: Kretz-Lehfeldt (KLN)

frequency: 4 - 15 MHz

time of production: since 1970

Developed for medical purposes, especially for Ophthalmology, <u>succeeding the LEHFELDT Echoskop MPT-10</u>. Plug-in boards and printed circuits, all transistors. Scale expansion. Optional electronic scale with quartz control for transit time. Adjustable sound velocity in distance scales. Depth gain control. Variable power for transmission, receiver gain control calibrated range of 80 dB; variable pulse repetition frequency. Display of HF-mode or A-mode by variable filter and threshold levels. *Origin: H.G. Trier, Bonn*.

Figure above: Displaying in identical distension the echogram (T_1 , here the eyeball axially) and the transit time (internal quartz-scale $T_2 = 30\mu s$).

Therefore an external transit-time calibration is not necessary

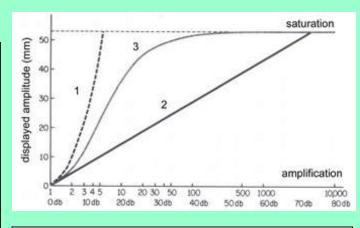


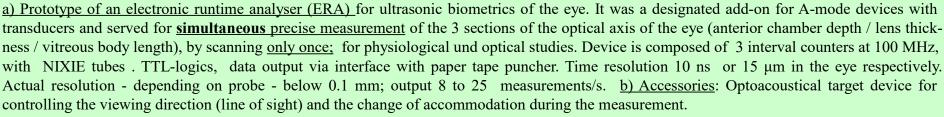
Fig. above: Differences in the amplifier characteristics, exemplified by KRETZ A-Mode-devices

1= linear characteristic e.g.. KRETZ Typ 7000

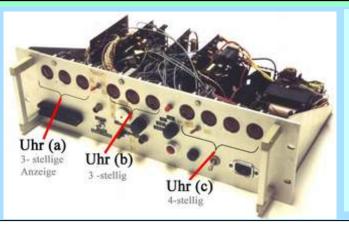
2= log. characteristic e.g.. KRETZ Typ 7100 MA

3 = special characteristic e.g. KRETZ Typ 7200 MA

description: Device for Automatic

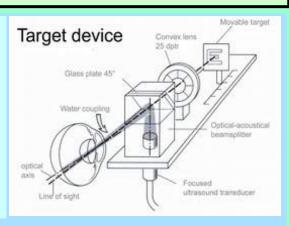

Runtime Determination

type of device: E.R.A. producer/distributor:


development: H. G. Trier and co-workers

Instit. f. med. Optics, Munich Univers.

frequency: 8 - 14 MHz time of production: Prototype 1968/69



Origin: H. G. Trier and TIMUG eV, Bonn.

Participating in the development (DFG-project TRIER 89/1) were: A. HAMMERLA and F. SCHRIEVER, Munich; R. REUTER and R. D. LEPPER, Bonn. In West Germany (FRG) further development progressed in several steps to the new category of "Devices for automatic electronic runtime analysis" (ERA) for ophthalmology, with numerous company products. In the FRG special minimum requirements for these devices (E.L.M.) had to be fulfilled for quality control since 1985.

Precursors for precision oculometry were the approaches 1966-68 in USA by GIGLIO, COLEMAN and CARLIN.

Ultrasonic biometry of the eye with E.R.A.was easy and precise. Since about 1975 it was a crucial prerequisite for calculating intraocular lens implants for cataract surgery. Worldwide it became the most common application of ultrasound in Ophthalmology, in West Germany we had 300,000 to 500,000 examinations every year. For about 30 years this biometrical ultrasound procedure was unrivalled until about 2005, when optical biometry using contactless laser-optical measurements was introduced alternatively.

description: GBS Computerized System for Ultrasound Biometry of the Eye

non-segmental

successive

off-line

simultaneous

real-time

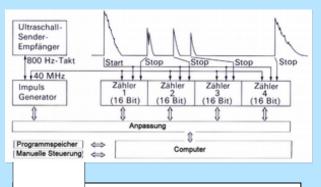
high

and processing

by computer

type of device: Runtime Device producer/distributor: Grieshaber AG (CH)

development: R. D. Lepper, H. G. Trier (Bonn)


frequency: 10 MHz

time of production: 1979 - 1986

Electronic runtime analyser (ERA) for ultrasonic biometrics of the eye enabling simultaneous measurements of the 3 axial segments. Manually guided probe, coupled to the eye by immersion. The examiner may adjust 3 to 4 measuring windows (gates) at the A-mode screen, triggering a series of automatic runtime measurements. Automatic evaluation of the signal quality in respect to alignment und stability, automatic calculation of every segment length with its specific sound velocity. Readings on mean and variance of the measurement series. After input of the optical values automatic calculations of the dioptre strength of the artificial implant lens for the eye in respect to correct refraction and image size for cataract surgery (IOL-software after GERNET, later LEPPER and HAIGIS). The system was composed of a GBS-console with transducer, a Commodore V64 computer with floppy disk drive, keyboard, printer and GBS-software. Findings with GBS-ultrasound systems later served for calibration of alternative laser optical measuring procedures for optical biometry of the eye (HAIGIS for Carl ZEISS AG.). *Origin: TIMUG eV, Bonn*



Work station for biometry of the eye with GBS-console (front), A-mode transducer, Commodore V64 computer, printer.

Fig. above: Composition of GRIESHABER GBS.

Characteristic: Simultaneous segmental real-time measurement, fast data flow, data statistics (mean, variance) with quality evaluation

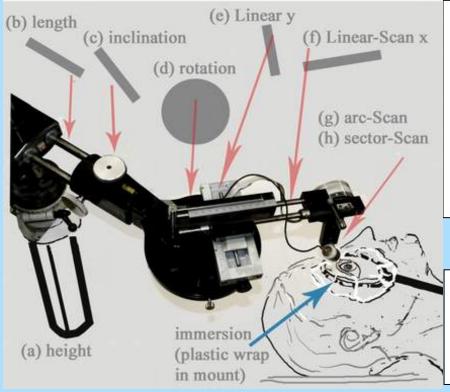
Key features for assessment of devices for biometry of the eye (oculometry) (HG. Trier)

No. 314/15

description: Ocular Sonograph

type of device: Compound development:

producer/distributor:


USI, Toronto (CDN)

frequency: 6-20 MHz

time of production: 1977

A-, B- and M-mode. 3 slide-in modules 19" including 2 screens, support for manual compound B-mechanics (with linear and angular potentiometers) for examinations of eyeball and orbit / neck / thyroid / small parts / skin, all immersed. Focused transducers 6-20 MHz. Receiver amplifier calibrated in decibels, 2 screens for (i) visual display (ii) of grey-scale stored images via scan converter. (Comment: Commercial remake of OPHTHALMOSCAN type 200, SONOMETRICS, New York, USA).

Origin: TIMUG eV, Bonn / U. Fries, Univ.-Augenklinik Frankfurt)

Fig. right: Essential features:

Lower module: Transmitter, preamplifier, preadjustment of display; M-mode adjustment.

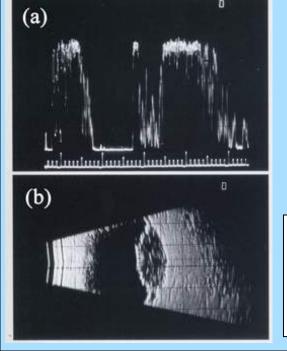
Middle module: Scan-converter with storage tube.

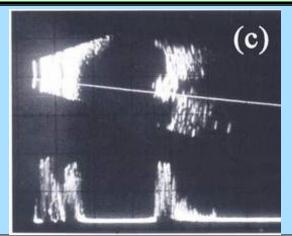
<u>Upper module:</u> Grey-scale screen (non storing). Selection of transducer frequency, of RF/video and sound velocity, Amplification up to 100 dB, filter, runtime calibration (quartz), scaling.

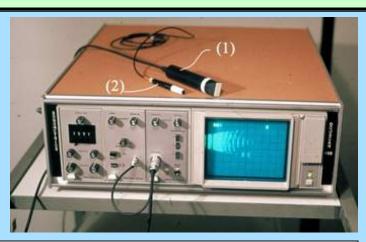
Fig. left: *Application of the compound-scan mechanics at the eye, with immersion coupling.* A membrane within a circular mount is filled with physiological saline solution. Immersed into this liquid is the transducer, which can be guided manually as linear scan (f), arc scan (g), sector scan (h) or combined as compound scan. For changing the section plane and the focal plane of the transducer, various adjustment options are available at the mount (a to e). *(Schematic illustration, HGT)*.

description: Ocuscan 400

type of device: Real-time producer/distributor: Sonometrics Inc. (USA)


A-/B-Mode/Biometry


development: L. Katz


frequency: 4-12 MHz

time of production: 1978 - 1982

Electro-mechanical sector scanner (20 frames/s) with single probe 8-10 MHz in a case with acoustic window, coupling at closed eyelid. Display switchable from A-mode or RF (standing probe) to real-time B-mode or to combination of B with vector A; scanning angle can be switched to 25° or 40°. Control unit for amplification, TGC and scaling. Polaroid adapter with foot switch. Option: Module for Biometry. with one electronic gate, numerical display of distance at the selected sound velocity. *Provenienz: TIMUG e.V., Bonn*

Fig. right: OCUSCAN 400 with 2 probes: (#1) for contact-B- und A-mode. (#2) separate A-mode probe for biometry.

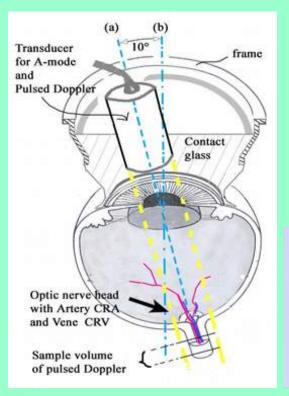
Fig. (a) (b) (c): Polaroid images with contact-probe (1): (a) A-mode with standing probe

- (b) Sector B-mode; both (a) and (b) showing a tumour in the eyeball
- (c) Simultaneous B- and Vector-A display with moving probe (vector-blanking in preselected video image-line, 1 per frame, at 20 frames /s).

description: DRG Retina Doppler

type of device: Pulsed Doppler / producer/distributor: TOMEY, Erlangen

A-Mode


/ SONOTECHNIK

development: Fortune Optical/TIMUG eV, 1996-97

frequency: 10 MHz

time of production: 1998

A contact glass with an integrated probe for pulsed Doppler and A-mode is placed on the eyeball. In order to measure the blood-flow in the central artery of the eye or in the ophthalmic artery, the sample volume of the probe is automatically directed - aided by A-mode biometry - to the rear of the eyeball, at the entrance of the optic nerve. The Doppler-signal is documented by a one-channel printer. Doppler-calibration with Doppler-simulator DS 81. Origin: H.G. Trier, Bonn

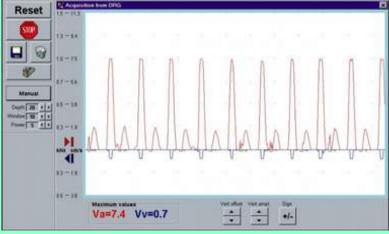
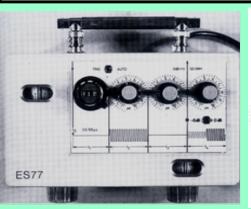


Fig. middle (both): DRG work place. Characteristics of the pulsed Doppler probe in the contact glass: 10 MHz, piezo-Ø 4 mm, Doppler sample-volume size variable axially 1-10 mm, laterally fixed at 1 mm (-6dB). The sample volume is automatically placed at a depth of 20-30 mm, according to the length of the eyeball, as recorded by A-mode scan of the same probe. Angle of probe to eye axis = 10° (OBERMAIER). Comprehensive evaluation of the central retinal arteries (CRA) included supplementary CW-Doppler examinations of the extra- and intracranial carotid flow. Fig. left: Transducer with contact glass: Schematic illustration. Fig. right: DRG-graph displaying systolic Doppler-shift of 1 kHz corresponding to a velocity of 7,4 cm/s.

description: Echosimulator ES77

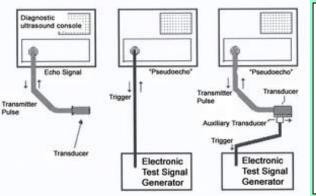


type of device: Test signal generator producer/distributor: RUCK Ophthal. for A-/B-/M-Mode Systeme GmbH

development: R. Reuter (workgroup H.G. Trier), Bonn

frequency: Pseudoechos 5-15 MHz time of production: since 1977

In order to objectively define the quality of signals and images and thus to trace and to localise potential malfunction, basically two different tools are necessary: (i) test bodies (phantoms) for integral assessment of the combination transducer /console, and (ii) <u>electronic test signals</u> for separate components. As a testing device for the second category the working group and test laboratory of H.G.TRIER at the university of Bonn, Germany, developed a series of echo-simulators since 1976-77. <u>Type ES 77 was developed for single channel A-, B- and M-mode systems,</u> combining important practical testing parameters, for which otherwise several measurement instruments would be necessary for test operations. Therefore it was suitable for quality control of device manufacturers, distributors and operators. *Origin: TIMUG eV, Bonn*.



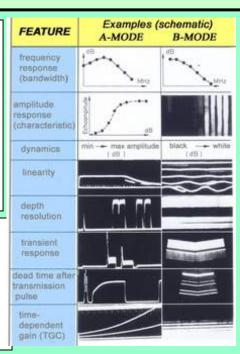

Fig. left:
Device ES77 and implementation of electronic test signals (schematic)

Chart right: Acquisition of various device characteristics

ECHOSIMULATOR

in A- and B-mode with

The transducer plug of the console is fed with a signal sequence, the parameters of which can be continuously altered by the investigator (carrier frequency 5-15 MHz, the amplitude can be lowered up to -100 dB; referred to 1 V_{ss} at 50 Ohm source resistance, temporal distance from transmitted pulse and signal duration). The pseudoechos can be fed freely or triggered by the transmitted pulse. The principle of this test method was incorporated in technical standards for quality control of pulsed echoscanners in all respective disciplines (DIN EN 6 1391-2 // IEC 61391-2:2010: "Measuring the maximum penetration and the local dynamic range"; part on direct electr. testing procedures). Application: distributors and users of devices. Further developments of the ES 77, which was built with analogue components was a PC-supported version (with W. HAIGIS) and the device SONOGEN with digital architecture (Aachen/ Jülich university of applied sciences). Origin: TIMUG eV, Bonn.

description: Echosimulator ES 81B/Q

type of device: Test signal generator for biometry of the eye

producer/distributor: RUCK Ophthal

Systeme GmbH

development: R. Reuter (workgroup H.G. Trier), Bonn

frequency: Pseudoechos 6 - 10 MHz time of production: Since 1981

Both testing devices permitted the analysis and calibration of device functions in ultrasonic biometry of the eye, especially in automatic runtime measuring (ERA). The electronic test signal is injected in the plug thus replacing the transducer. The signal corresponds to the typical echo chain within the eye axis and has got the correct phase relations of the transient, i.e. also the typical phase jumps occurring at the interfaces of the eye due to varying acoustical impedance. Runtimes between individual signals and within the coupling layers rare adjustable. Type ES 81B is battery powered; Type ES81Q with quartz stabilizers. *Origin: TIMUG eV, Bonn.*

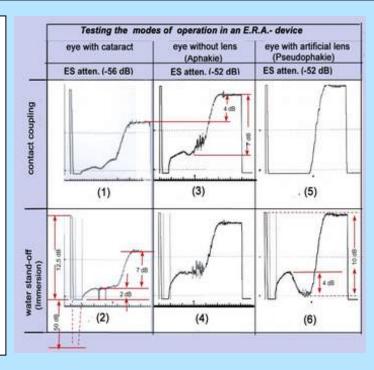
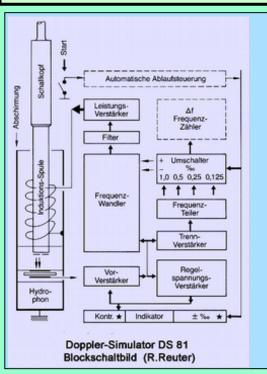
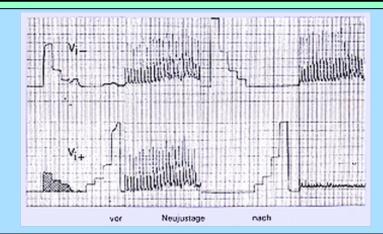


Fig. left above: ECHOSIMULATOR type 81B battery powered.

Fig. Left below: Type ES 81Q with quartz stabilization.

Fig. right: With ECHOSIMULATOR determined characteristics of an ultrasonic biometry device (ERA) for ophthalmology. In this case the input of simulated echoes of same amplitude is amplified and displayed differently, depending on the operating mode. Illustrations (1)-(6) reveal the types of runtime-dependent amplifications, inherent to this device (TGC characteristics). Thus electronic test signals clarify device properties hidden to the operator but decisive fur the accuracy of the ultrasonic biometry.


description: Doppler-Simulator DS 81


type of device: Doppler-Simulator producer/distributor: RUCK Ophthalmol.

Systeme GmbH

development: R. Reuter (workgroup H.G. Trier), Bonn

Fig. left: At the bottom of the device there is a selector switch for Doppler-shift. **SK**=transducer in the guiding tube with hydrophone **H** and induction coil **I**.

Fig. above: Application example of a directional Doppler device Crosstalk of channel (V i-) in (V i+), amplitude error in both channels. Left side before, right side after readjustment (now perfect function). Reference steps 0.125 - 1.0 ‰ of simulator DS81.